• 제목/요약/키워드: PTX3

검색결과 59건 처리시간 0.031초

The activation of α2-adrenergic receptor in the spinal cord lowers sepsis-induced mortality

  • Kim, Sung-Su;Park, Soo-Hyun;Lee, Jae-Ryung;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.495-507
    • /
    • 2017
  • The effect of clonidine administered intrathecally (i.t.) on the mortality and the blood glucose level induced by sepsis was examined in mice. To produce sepsis, the mixture of D-galactosamine (GaLN; 0.6 g/10 ml)/lipopolysaccharide (LPS; $27{\mu}g/27{\mu}l$) was treated intraperitoneally (i.p.). The i.t. pretreatment with clonidine ($5{\mu}g/5{\mu}l$) increased the blood glucose level and attenuated mortality induced by sepsis in a dose-dependent manner. The i.t. post-treatment with clonidine up to 3 h caused an elevation of the blood glucose level and protected sepsis-induced mortality, whereas clonidine post-treated at 6, 9, or 12 h did not affect. The pre-treatment with oral D-glucose for 30 min prior to i.t. post-treatment (6 h) with clonidine did not rescue sepsis-induced mortality. In addition, i.t. pretreatment with pertussis toxin (PTX) reduced clonidine-induced protection against mortality and clonidine-induced hyperglycemia, suggesting that protective effect against sepsis-induced mortality seems to be mediated via activating PTX-sensitive G-proteins in the spinal cord. Moreover, pretreatment with clonidine attenuated the plasma tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$) induced by sepsis. Clonidine administered i.t. or i.p. increased $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, but decreased p-Tyk2 and p-mTOR levels in both control and sepsis groups, suggesting that the up-regulations of $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, or down-regulations of p-mTOR and p-Tyk2 may play critical roles for the protective effect of clonidine against sepsis-induced mortality.

Effects of 1,7-Substituted Methylxanthine Derivatives on LPS-Stimulated Expression of Cytokines and Chemokines in Raw 264.7 and HK-2 Cells

  • Kang, Joo-Yeon;Shin, Hea-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.296-301
    • /
    • 2015
  • Chronic kidney diseases are based on uncontrolled immunological and inflammatory responses to pathophysiological renal circumstances such as glomerulonephritis, which is caused by immunological mechanisms of glomerular inflammation with increased production of renal pro-inflammatory cytokines. Pentoxifylline (PTX) exhibits anti-inflammatory properties by inhibiting cytokine and chemokine production through aggregation of erythrocytes and thrombocytes. We synthesized a series of 1,7-substituted methylxanthine derivatives by the Traube purine reaction, and the formation of purine ring was completed through nitrosation, a reduction of the nitroso to the amine by catalytic hydrogenation as derivatives of PTX. Then we studied biological activities such as renal anti-inflammatory effects of the synthesized compounds in the production of cytokines such as nitric oxide (NO), interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) and of chemokines such as monocyte chemoattractant protein-1 and IL-8 in Raw 264.7 and HK-2 cells. Renal antiinflammatory activities of this novel series of N-1 and N-7-substituted methylxanthine showed that the N-7 methyl-group-substituted analogs (S7b) showed selective 61% and 77% inhibition of the production of NO and IL-8. The other replacement of the N-1-(CH2)4COCH3 roup, as in the case of compound S6c, also showed an effective 50% and 77% inhibition of TNF-α and IL-8 production in LPS-stimulated Raw 264.7 and HK-2 cells.

Cooperation of $G{\beta}$ and $G_{\alpha}q$ Protein in Contractile Response of Cat Lower Esophageal Sphincter (LES)

  • Sohn, Uy-Dong;Lee, Tai-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.349-355
    • /
    • 2003
  • We previously shown that LES contraction depends on $M_3$ receptors linked to PTX insensitive $G_q$ protein and activation of PLC. This results in production of $IP_3$, which mediates calcium release, and contraction through a CaM dependent pathway. In the esophagus ACh activates $M_2$ receptors linked to PTX sensitive $G_{i3}$ protein, resulting in activation of PLD, presumably, production of DAG. We investigated the role of PLC isozymes which can be activated by $G_q$ or $G{\beta}$ protein on ACh-induced contraction in LES and esophagus. Immunoblot analysis showed the presence of 3 types of PLC isozymes, $PLC-{\beta}1$, $PLC-{\beta}3$, and $PLC-{\gamma}1$, but not $PLC-{\beta}2$, $PLC-{\beta}4$, $PLC-{\gamma}2$, $PLC-{\delta}1$, and $PLC-{\delta}2$ from both LES and esophageal muscle. ACh produced contraction in a dose dependent manner in LES and esophageal muscle cells obtained by enzymatic digestion with collagenase. $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody incubation reduced contraction in response to ACh in LES but not in esophageal permeabilized cells, but $PLC-{\gamma}1$ antibody incubation did not have an inhibitory effect. The inhibition by $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody on Ach-induced contraction was antibody concentration dependent. The combination with $PLC-{\beta}_1$ and $PLC-{\beta}_3$ antibody completely abolished the contraction, suggesting that $PLC-{\beta}1$ and $PLC-{\beta}3$ have a synergism to inhibit the contraction in LES. $PLC-{\beta}1$, -${\beta}3$ or -${\gamma}1$ antibody did not reduce the contraction of LES cells in response to DAG ($10^{-6}$ M), suggesting that this isozyme of PLC may not activate PKC. When $G_{q/11}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}3$, but not of PLC ${\beta}_1$ was additive (Fig. 6). In contrast, when $G_{\beta}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}_1$, but not of PLC ${\beta}_3$ was additive. This data suggest that $G_{q/11}$/11 or $G{\beta}$ may activate cooperatively different PLC isozyme, $PLC{\beta}_1$ or $PLC{\beta}_3$ respectively.

Phospholipase C-β3 Mediates the Thrombin-induced Ca2+ Response in Glial Cells

  • Hwang, Jong-Ik;Shin, Kum-Joo;Oh, Yong-Seok;Choi, Jung-Woong;Lee, Zee-Won;Kim, Daesoo;Ha, Kwon-Soo;Shin, Hee-Sup;Ryu, Sung Ho;Suh, Pann-Ghill
    • Molecules and Cells
    • /
    • 제19권3호
    • /
    • pp.375-381
    • /
    • 2005
  • Phospholipase C-${\beta}$ (PLC-${\beta}$) hydrolyses phosphatidylinositol 4,5-bisphosphate and generates inositol 1,4,5-trisphosphate in response to activation of various G protein-coupled receptors (GPCRs). Using glial cells from knock-out mice lacking either PLC-${\beta}1$ [PLC-${\beta}1$ (-/-)] or PLC-${\beta}3$ [PLC-${\beta}3$ (-/-)], we examined which isotype of PLC-${\beta}$ participated in the cellular signaling events triggered by thrombin. Generation of inositol phosphates (IPs) was enhanced by thrombin in PLC-${\beta}1$ (-/-) cells, but was negligible in PLC-${\beta}3$ (-/-) cells. Expression of PLC-${\beta}3$ in PLC-${\beta}3$ (-/-) cells resulted in an increase in pertussis toxin (PTx)-sensitive IPs in response to thrombin as well as to PAR1-specific peptide, while expression of PLC-${\beta}1$ in PLC-${\beta}1$ (-/-) cells did not have any effect on IP generation. The thrombin-induced $[Ca^{2+}]_i$ increase was delayed and attenuated in PLC-${\beta}3$ (-/-) cells, but normal in PLC-${\beta}1$ (-/-) cells. Pertussis toxin evoked a delayed $[Ca^{2+}]_i$ increase in PLC-${\beta}3$ (-/-) cells as well as in PLC-${\beta}1$ (-/-) cells. These results suggest that activation of PLC-${\beta}3$ by pertussis toxin-sensitive G proteins is responsible for the transient $[Ca^{2+}]_i$ increase in response to thrombin, whereas the delayed $[Ca^{2+}]_i$ increase may be due to activation of some other PLC, such as PLC-${\beta}4$, acting via PTx-insensitive G proteins.

LC-MS/MS를 이용한 설사성패류독소의 분석조건 확립 (Establishment of a Method for the Analysis of Diarrhetic Shellfish Poisoning by Liquid Chromatography-Tandem Mass Spectrometry)

  • 이가정;스즈키 도시유키;김풍호;오은경;송기철;김지회
    • 한국식품과학회지
    • /
    • 제41권4호
    • /
    • pp.458-463
    • /
    • 2009
  • 설사성패류독의 신속정밀 분석조건 확립을 위하여 LC-MS/MS를 사용하여 이동상, 분석용 column 및 collision energy 등을 변화시키면서 시험하였다. 50 mM formic acid와 2 mM ammonium formate가 함유된 acetonitrile 수용액을 이동상으로 사용하였을 때 OA와 DTX1이 검출되었다. Collision energy는 독소 성분에 따라 달리하는 것이 다성분 동시분석에 적합하였으며 OA와 DTX1 고유의 fragment ion들은 48 V 정도에서 최적의 intensity로 확인되었다. Column의 종류에 따라서는 $C_8$ column의 경우 OA, DTX1, DTX3, PTX2 및 YTX 모두 검출 가능하였으나 실제 검출 대상이 OA와 DTX1인 경우에는 일반적으로 사용되는 $C_{18}$ column도 적합한 것으로 확인되었다. 본 연구에서 확립한 LC-MS/MS 분석 조건의 검출한계는 OA와 DTX1 모두 1 ng/g, 정량한계는 각각 3 ng/g이었고, 표준독 성분을 첨가한 시료에서 process efficiency는 굴의 경우 91-118%, 진주담치에서는 96-117%이었고, matrix의 영향은 거의 없었다. 마우스 시험에서 양성을 나타낸 시료를 LCMS/MS법으로 분석한 결과, 일부 시료에서만 OA 및 DTX1이 검출되어 두 시험법의 독성은 일치하지 않았으며 LC-MS/MS법은 마우스 시험법보다 하루 이상 분석시간을 단축할 수 있었다.

Effect of Sphingosine-1-Phosphate on Intracellular Free Ca2+ in Cat Esophageal Smooth Muscle Cells

  • Lee, Dong Kyu;Min, Young Sil;Yoo, Seong Su;Shim, Hyun Sub;Park, Sun Young;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.546-552
    • /
    • 2018
  • A comprehensive collection of proteins senses local changes in intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) and transduces these signals into responses to agonists. In the present study, we examined the effect of sphingosine-1-phosphate (S1P) on modulation of intracellular $Ca^{2+}$ concentrations in cat esophageal smooth muscle cells. To measure $[Ca^{2+}]_i$ levels in cat esophageal smooth muscle cells, we used a fluorescence microscopy with the Fura-2 loading method. S1P produced a concentration-dependent increase in $[Ca^{2+}]_i$ in the cells. Pretreatment with EGTA, an extracellular $Ca^{2+}$ chelator, decreased the S1P-induced increase in $[Ca^{2+}]_i$, and an L-type $Ca^{2+}$-channel blocker, nimodipine, decreased the effect of S1P. This indicates that $Ca^{2+}$ influx may be required for muscle contraction by S1P. When stimulated with thapsigargin, an intracellular calcium chelator, or 2-Aminoethoxydiphenyl borate (2-APB), an $InsP_3$ receptor blocker, the S1P-evoked increase in $[Ca^{2+}]_i$ was significantly decreased. Treatment with pertussis toxin (PTX), an inhibitor of $G_i$-protein, suppressed the increase in $[Ca^{2+}]_i$ evoked by S1P. These results suggest that the S1P-induced increase in $[Ca^{2+}]_i$ in cat esophageal smooth muscle cells occurs upon the activation of phospholipase C and subsequent release of $Ca^{2+}$ from the $InsP_3$-sensitive $Ca^{2+}$ pool in the sarcoplasmic reticulum. These results suggest that S1P utilized extracellular $Ca^{2+}$ via the L type $Ca^{2+}$ channel, which was dependent on activation of the $S1P_4$ receptor coupled to PTX-sensitive $G_i$ protein, via phospholipase C-mediated $Ca^{2+}$ release from the $InsP_3$-sensitive $Ca^{2+}$ pool in cat esophageal smooth muscle cells.

X-ray Absorption Near-edge Studies of Au1-xPtx alloys

  • Y.D. Chung;Lim, K.Y.;Lee, Y.S.;C.N.Whang;Park, B.S.;Y.Jeon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.164-164
    • /
    • 2000
  • Since Au-Pt alloys have various atomic structures depending upon composition and annealing temperature, it is very interesting to investigate the electronic structures of alloys. We studied the changes of the electronic structure I the Au-Pt alloys by x-ray absorption near edge spectroscopy (XANES). Two kinds of Au-Pt alloy samples were prepared by arc melting methods and ion-beam-mixing technique. The Pt L2, 3-edge and Au L2, 3-edge X-ray absorption spectra (XPS) were measured with the electron yield mode detector at the 3C1 beam line of the Pohang Light Source (PLS). It was found that there was a substantial decrease in the area of the Pt L2, 3 white lines compared with that of pure Pt. The observed decrease in white line area was attributed to an increase in the number of pure Pt. The observed decrease in white line area was attributed to an increase in the number of 5d-electrons at the Pt site upon alloy formation. However, the Au L2, 3 edge spectra for Au-Pt alloys are all similar to that of pure Au. This implies that the 5d hole count of Au is not changed by alloy formation with Pt.

  • PDF

Reversible Effects of Exogenous GM3 on Meiotic Maturation and Cumulus Cells Expansion of Porcine Cumulus-oocyte Complexes

  • Kim, Jin-Woo;Park, Hyo-Jin;Jung, Jae-Min;Yang, Seul-Gi;Kim, Min-Ji;Kim, In-Su;Jegal, Ho-Geun;Koo, Deog-Bon
    • 한국수정란이식학회지
    • /
    • 제33권4호
    • /
    • pp.287-296
    • /
    • 2018
  • Ganglioside GM3 is known as an inhibition factor of cell differentiation and proliferation via inhibition of epidermal growth factor receptor (EGFR) phosphorylation. Our previous study showed that the exogenous ganglioside GM3 reduced the meiotic maturation of porcine oocytes and induced apoptosis at 44 h of in vitro maturation (IVM). However, the role of ganglioside GM3 in the relationship between EGFR signaling and apoptosis during porcine oocyte maturation has not yet been studied. First, porcine cumulus-oocyte complexes (COCs) were cultured in the NCSU-23 medium with exogenous ganglioside GM3 according to maturation periods (non-treated, only IVM I: 0 - 22 h, only IVM II: 22 - 44 h and IVM I & II: 0 - 44 h). We confirmed that the proportion of germinal vesicle breakdown (GVBD) increased significantly in the IVM I treated group than in the control group. We also confirmed that the meiotic maturation until M II stage and polar body formation decreased significantly in the only IVM I treated group. Cumulus cell expansion and mRNA levels of the expansion-related factors (HAS2, TNFAIP6 and PTX3) decreased significantly in the IVM I treated group than in the control group. Protein levels of EGFR, p-EGFR, ERK1/2, and p-ERK1/2 decreased significantly in the GM3-treated groups, during the IVM I period. In addition, cellular apoptosis, determined using TUNEL assay, and protein levels of Cleaved caspase 3, were increased significantly in the GM3-treated COCs during the IVM I period. Based on these results, ganglioside GM3 exposure of porcine COCs during the IVM I period reduced meiotic maturation and cumulus cell expansion via inhibition of EGFR activity in pigs.

Chemotactic Effect of Leukotactin-1/CCL15 on Human Neutrophils

  • Lee Ji-Sook;Yang Eun-Ju;Ryang Yong-Suk;Kim In-Sik
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.145-151
    • /
    • 2006
  • Leukotactin-l (Lkn-l )/CCL15 has been known as a potent chemoattractant of leukocytes. However, the precise function of Lkn-l in human neutrophils has not been explained well. In the present study, we investigated the contribution of Lkn-1 in chemotactic activity of human neutrophils. Both CCR1 and CCR3 mRNA expressions are strongly expressed in human neutrophils but CCR2 protein expression was uniquely detected on the cell surface. Lkn-l binding to CCR1 and CCR3 induced chemotactic activity of neutrophils. Chemotactic index of Lkn-l was comparable to that of IL-8. $MIP-1{\alpha}/CCL3$ binding to CCR1 and CCR5 has no effect on neutrophil migration. Cell migration, in response to Lkn-l, was blocked by pertussis toxin (Ptx), a $G_o/G_i$ protein inhibitor, and U73122, a phospholipase C(PLC) inhibitor but not by protein kinase C inhibitor such as rottlerin, and Ro-31-8425. Taken together, our results demonstrate that Lkn-l transduces the chemotaxis signal through $G_o/G_i$ protein and PLC. This finding provides the molecular mechanism by which Lkn-l may contribute to neutrophil movement into the site of inflammation.

  • PDF

The Signaling Mechanism of Contraction Induced by ATP and UTP in Feline Esophageal Smooth Muscle Cells

  • Kwon, Tae Hoon;Jung, Hyunwoo;Cho, Eun Jeong;Jeong, Ji Hoon;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.616-623
    • /
    • 2015
  • P2 receptors are membrane-bound receptors for extracellular nucleotides such as ATP and UTP. P2 receptors have been classified as ligand-gated ion channels or P2X receptors and G protein-coupled P2Y receptors. Recently, purinergic signaling has begun to attract attention as a potential therapeutic target for a variety of diseases especially associated with gastroenterology. This study determined the ATP and UTP-induced receptor signaling mechanism in feline esophageal contraction. Contraction of dispersed feline esophageal smooth muscle cells was measured by scanning micrometry. Phosphorylation of $MLC_{20}$ was determined by western blot analysis. ATP and UTP elicited maximum esophageal contraction at 30 s and $10{\mu}M$ concentration. Contraction of dispersed cells treated with $10{\mu}M$ ATP was inhibited by nifedipine. However, contraction induced by $0.1{\mu}M$ ATP, $0.1{\mu}M$ UTP and $10{\mu}M$ UTP was decreased by U73122, chelerythrine, ML-9, PTX and $GDP{\beta}S$. Contraction induced by $0.1{\mu}M$ ATP and UTP was inhibited by $G{\alpha}i_3$ or $G{\alpha}q$ antibodies and by $PLC{\beta}_1$ or $PLC{\beta}_3$ antibodies. Phosphorylated $MLC_{20}$ was increased by ATP and UTP treatment. In conclusion, esophageal contraction induced by ATP and UTP was preferentially mediated by P2Y receptors coupled to $G{\alpha}i_3$ and $G{\alpha}q$ proteins, which activate $PLC{\beta}_1$ and $PLC{\beta}_3$. Subsequently, increased intracellular $Ca^{2+}$ and activated PKC triggered stimulation of MLC kinase and inhibition of MLC phosphatase. Finally, increased $pMLC_{20}$ generated esophageal contraction.