• Title/Summary/Keyword: PTW

Search Result 90, Processing Time 0.018 seconds

The Development of Air-kerma Strength Calculation Algorithm in Terms of the Absorbed Dose to Water for HDR Ir-192 Source (기준점에서의 물 흡수선량을 이용한 Ir-192 선원의 공기커마 세기 계산을 위한 알고리즘 개발)

  • Huh, Hyun-Do;Kim, Woo-Chul;Loh, John-Jk;Lee, Suk;Lee, Sang-Hoon;Cho, Sam-Ju;Shin, Dong-Oh;Choi, Jin-Ho;Kwon, Soo-Il;Kim, Seong-Hoon
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.232-237
    • /
    • 2006
  • The aim of this study was to develop the calculation algorithm of source strength of Ir-192 source In terms of the absorbed dose to water instead of an apparent activity (Ci). For this work the Multi Purpose Brachytherapy Phantom(MPBP) was developed, which was designed to locate the source and the chamber precisely at a specific position Inside the water phantom. The reference point of measurement was set at the 5 cm distance along the transverse axis of the source. For a brachytherapy source calibration, the absorbed dose to water calibration factor ($N_{D.W.Q}$) of an lonization chamber were determined and then apply standard protocols of absorbed dose to water. The calibration factor ($N_{D.W.Q}$) of the ion chamber (TM30013, PTW, Germany) was determined using the EGSnrcCPP Monte Carlo Code. The calculated calibration factor ($N_{D.W.Q}$) was 5.28 cGy/nC. The calculated factor was then used to determine the absorbed dose to water from which the air kerma strength for an Ir-192 source can be easily derived at the reference point (5 cm). The calculated air kerma strength showed discrepancies of -0.6% to +1.8% relative to the air kerma strength provided by the vendor, In this work we demonstrated that the air kerma strength ($S_k$) could be determined from the absorbed dose to water calibration factor for Ir-192 source. In audition, this source calibration method could be applied directly to the dose Calculation formalism of AAPM report TG-43.

  • PDF

A Study on Absorbed Dose in the Breast Tissue using Geant4 simulation for Mammography (유방촬영에서 Geant4 시뮬레이션를 이용한 유방조직내 흡수선량에 관한 연구)

  • Lee, Sang-Ho;Lee, Jong-Seok;Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • As the breast cancer rate is increasing fast in Korean women, people pay more attention to mammography and number of mammography have been increasing dramatically over the last few years. Mammography is the only means to diagnose breast cancer early, but harms caused by radiation exposure shouldn't be overlooked. Therefore, it is important to calculate the radiation dose being absorbed into the breast tissue during the process of mammography for a protective measure against radiation exposure. Because it is impossible to directly measure the radiation dose being absorbed into the human body, statistical calculation methods are commonly used, and most of them are supposed to simulate the interaction between radiation and matter by describing the human body internal structure with anthropomorphic phantoms. However, a simulation using Geant4 Code of Monte Carlo Method, which is well-known as most accurate in calculating the absorbed dose inside the human body, helps calculate exact dose by recreating the anatomical human body structure as it is through the DICOM file of CT. To calculate the absorbed dose in the breast tissue, therefore, this study carried out a simulation using Geant4 Code, and by using the DICOM converted file provided by Geant4, this study changed the human body structure expressed on the CT image data into geometry needed for this simulation. Besides, this study attempted to verify if the dose calculation of Geant4 interlocking with the DICOM file is useful, by comparing the calculated dose provided by this simulation and the measured dose provided by the PTW ion chamber. As a result, under the condition of 28kVp/190mAs, the Difference(%) between the measured dose and the calculated dose was found to be 0.08 %~0.33 %, and at 28 kVp/70 mAs, the Difference(%) of dose was 0.01 %~0.16 %, both of which showed results within 2%, the effective difference range. Therefore, this study found out that calculation of the absorbed dose using Geant4 Simulation is useful in measuring the absorbed dose in the breast tissue for mammography.

The Consideration of Bolus Effects of Games Attached on Lesion area (환부 부착용 거즈의 Bolus Effect에 관할 고찰)

  • Park JuYoung;Ju SangKyu;Park YoungChul;Han YoungYi;Shin EunHyuk;Park YongHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.51-56
    • /
    • 2004
  • The aim of this study is to evaluate the effect of skin dose and PDD by using wounds protecting gauzes or Vaselinespread gauzes. And it was studied that the possibility to substitute custom bolus into gauzes. 4MV photon (CL600C, varian, US), Polystyrene Phantom (30(W) X30(L) X 30(H)) with Markus chamber(PTW, US) were used for dose measurement. This study was distinguished natural gauzes and spread over Vaseline gauzes. We gave variety to the gauze thickness at 5, 10 and 15 sheets respectively. For comparison between using bolus and not that, we had used 1.0 cm thickness bolus so that analyzed surface dose and PDD at the same conditions above mentioned. When maximum point was defined as reference point, surface dose was measured as $35\%$ in open beam. When the gauzes were attached to surface as 5, 10 and 15 sheets, surface dose were increased as 69, 80 and $91\%$ respectively according to thickness of gauzes. When spread over Vaseline gauzes were attached to surface as 5, 10 and 15 sheets, surface dose were increased respectively as 98, 100 and $98\%$ according to thickness of gauzes. Also when 0.5 cm bolus and 5 sheets gauzes were composed, surface dose was measured as $98\%$. The gauzes that were attached to skin surface in radiation therapy had been scattering material and contributed increasing surface dose without variation of percentage depth dose. However, if we want to delivery much dose to skin surface then we have to apply many sheets of gauzes to skin surface. Although we get easy that result by bolus or spread over Vaseline gauzes, we have to revise percentage depth dose at calculation. Therefore, if we find pertinent conditions based on measured data that are considered skin dose and patient setup efficiency, to replace custom bolus with gauzes will be helpful to efficient treatment.

  • PDF

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

Assessment on Accuracy of Stereotactic Body Radiation therapy (SBRT) using VERO (VERO system을 이용한 정위적 체부 방사선치료(SBRT)의 정확성 평가)

  • Lee, Wi Yong;Kim, Hyun Jin;Yun, Na Ri;Hong, Hyo Ji;Kim, Hong Il;Baek, Seung Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Purpose: The present study aims to assess the level of coherency and the accuracy of Point dose of the Isocenter of VERO, a linear accelerator developed for the purpose of the Stereotactic Body Radiation Therapy(SBRT). Materials and Method: The study was conducted randomly with 10 treatment plans among SBRT patients in Kyungpook National University Chilgok Hospital, using VERO, a linear accelerator between June and December, 2018. In order to assess the equipment's power stability level, we measured the output constancy by using PTW-LinaCheck, an output detector. We also attempted to measure the level of accuracy of the equipment's Laser, kV(Kilo Voltage) imaging System, and MV(Mega Voltage) Beam by using Tofu Phantom(BrainLab, Germany) to assess the accuracy level of geometrical Isocenter. We conducted a comparative analysis to assess the accuracy level of the dose by using an acrylic Phantom($30{\times}30{\times}20cm$), a calibrated ion chamber CC-01(IBA Dosimetry), and an Electrometer(IBA, Dosimetry). Results: The output uniformity of VERO was calculated to be 0.66 %. As for geometrical Isocenter accuracy, we analyzed the error values of ball Isocenter of inner Phantom, and the results showed a maximum of 0.4 mm, a minimum of 0.0 mm, and an average of 0.28 mm on X-axis, and a maximum of -0.4 mm, a minimum of 0.0 mm, and an average of -0.24 mm on Y-axis. A comparison and evaluation of the treatment plan dose with the actual measured dose resulted in a maximum of 0.97 % and a minimum of 0.08 %. Conclusion: The equipment's average output dose was calculated to be 0.66 %, meeting the ${\pm}3%$ tolerance, which was considered as a much uniform fashion. As for the accuracy assessment of the geometric Isocenter, the results met the recommended criteria of ${\pm}1mm$ tolerance, affirming a high level of reproducibility of the patient's posture. The difference between the treatment plan dose and the actual measurement dose was calculated to be 0.52 % on average, significantly less than the 3 % tolerance, confirming that it obtained predicted does. The current study suggested that VERO equipment is suitable for SBRT, and would result in notable therapeutic effect.

Evaluation of the effect of a Position Error of a Customized Si-Bolus Produced using a 3D-Printer: Cervical Cancer Radiation Treatment (3D 프린터를 이용하여 제작한 맞춤형 Si-Bolus의 위치 오차 효과 평가: 자궁경부암 방사선 치료)

  • Seong Pyo Hong;Ji Oh Jeong;Seung Jae Lee;Byung Jin Choi;Chung Mo Kim;Soo Il Jung;Yun Sung Shin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.7-13
    • /
    • 2023
  • Purpose: In this study, we evaluated the effect of using a customized bolus on dose delivery in the treatment plan when cervical cancer protruded out of the body along with the uterus and evaluated reproducibility in patient set-up. Materials & Methods: The treatment plan used the Eclipse Treatment Planning System (Version 15.5.0, Varian, USA) and the treatment machine was VitalBeam (Varian Medical Systems, USA). The radiotherapy technique used 6 MV energy in the AP/PA direction with 3D-CRT. The prescribed dose is 1.8 Gy/fx and the total dose is 50.4 Gy/28 fx. Semiflex TM31010 (PTW, Germany) was used as the ion chamber, and the dose distribution was analyzed and evaluated by comparing the planned and measured dose according to each position movement and the tumor center dose. The first measurement was performed at the center by applying a customized bolus to the phantom, and the measurement was performed while moving in the range of -2 cm to +2 cm in the X, Y, and Z directions from the center assuming a positional error. It was measured at intervals of 0.5 cm, the Y-axis direction was measured up to ±3 cm, and the situation in which Bolus was set-up incorrectly was also measured. The measured doses were compared based on doses corrected to CT Hounsfield Unit (HU) 240 of silicon instead of the phantom's air cavity. Result: The treatment dose distribution was uniform when the customized bolus was used, and there was no significant difference between the prescribed dose and the actual measured value even when positional errors occurred. It was confirmed that the existing sheet-type bolus is difficult to compensate for irregularly shaped tumors protruding outside the body, but customized Bolus is found to be useful in delivering treatment doses uniformly.

  • PDF

The Study of Shielding Effect on Ovoids of Three Different Gynecological Applicator Sets in microSelectron-HDR System (microSelectron-HDR System에서 부인암 강내조사에 쓰이는 세 가지 Applicator Set들의 Ovoids에 대한 차폐효과 연구)

  • Cho, Young-K.;Park, Sung-Y.;Choi, Jin-H.;Kim, Hung-J.;Kim, Woo-C.;Loh, John-J.K.;Kim, Joo-Y.
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • There are three different types of gynecological applicator sets available in microSelectron-high dose-rate(HDR) System by Nucletron; standard applicator set(SAS), standard shielded applicator set(SSAS), and Fletcher-Williamson applicator set(FWAS). Shielding effect of a SAS without shielding material was compared with that of a SSAS with shielding material made of stainless steel(density ${\varrho}=8,000kg/m^3$) at the top and bottom of each ovoid, and of a FWAS with shielding material made of tungsten alloy(density ${\varrho}=14,000kg/m^3$ at the top and bottom of each ovoid. The shielding effects to the rectum and bladder of these two shielded applicator sets were to be measured at reference points with an ion chamber and specially designed supporting system for applicator ovoids inside of the computerized 3-dimensional water phantom. To determine the middle point of two ovoids the measurement was performed with the reference tip of ion chamber placed at the same level and at the middle point from the two ovoids, while scanning the dose with the ion chamber on each side of ovoids. The doses to the reference points of rectum were measured at 20(Rl), 25(R2), 30(R3), 40(R4), 50(R5), and 60(R6) mm located posteriorly on the vertical line drawn from M5(the middle dwell position of ovoid), and the doses to the bladder were measured at 20(Bl), 30(B2), 40(B3), 50(B4), and 60(B5) mm located anteriorly on the vertical line drawn from M5. The same technique was employed to measure the doses on each reference point of both SSAS and FWAS. The differences of measured rectal doses at 25 mm(R2) and 30 mm(R3) between SAS and SSAS were 8.0 % and 6.0 %: 25.0% and 23.0 % between SAS and FWAS. The differences of measured bladder doses at 20 mm(Bl) and 30 mm(B2) between SAS and SSAS were 8.0 % and 3.0 %: 23.0 % and 17.0 % between SAS and FWAS. The maximum shielding effects to the rectum and bladder of SSAS were 8.0 % and 8.0 %, whereas those of FWAS were 26.0 % and 23.0 %, respectively. These results led to the conclusion that FWAS has much better shielding effect than SSAS does, and when SSAS and FWAS were used for gynecological intracavitary brachytherapy in microSelectron-HDR system, the dose to the rectum and bladder was significantly reduced to optimize the treatment outcome and to lower the complication rates in the rectum and bladder.

  • PDF

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

A Study of Peripheral Doses for Physical Wedge and Dynamic Wedge (고정형 쐐기(Physical wedge)와 동적 쐐기(Dynamic wedge)의 조사야 주변 선량에 관한 연구)

  • Ko, Shin-Gwan;Min, Je-Soon;Na, Kyung-Soo;Lee, Je-Hee;Park, Heung-Deuk;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.407-413
    • /
    • 2008
  • Measurements of the peripheral dose were performed using a 2D array ion chamber and solid water phantom for a $10{\times}10cm$, source-surface distance (SSD) 90cm, 6 and 15MV photon beam at depths of 0.5cm, 5cm through $d_{max}$. Measurements of peripheral dose at 0.5cm and 5cm depths were performed from 1cm to 5cm outside of fields for the dynamic wedge and physical wedge $15^{\circ}$, $45^{\circ}$. For 6MV photon beam, the average peripheral dose of dynamic wedge were lower by 1.4% and 0.1% than that of physical wedge For 15MV photon beam, the peripheral dose of dynamic wedge were lower by maximum 1.6% that of physical wedge. The results showed that dynamic wedge can reduce scattered dose of clinical organ close to the field edge. The wedge systems produce different peripheral dose that should be considered in properly choosing a wedge system for clinical use.

  • PDF

A Study of Peripheral Doses for Physical Wedge and Dynamic Wedge (고정형쐐기(Physical Wedge)와 동적쐐기(Dynamic Wedge)의 조사야 주변 선량에 관한 연구)

  • Min, Je-Soon;Na, Kyung-Soo;Lee, Je-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • Purpose: This study investigates peripheral dose from physical wedge and dynamic wedge system on a multileaf collimator (MLC) equipment linear accelerator. Materials and Methods: Measurments were performed using a 2D array ion chamber and solid water phantom for a 10$\times$10 cm, source-surface distance (SSD) 90 cm, 6 and 15 MV photon beam at depths of 0.5 cm, 5 cm through dmax. Measurments of peripheral dose at 0.5 cm and 5 cm depths were performed from 1 cm to 5 cm outside of fields for the dynamic wedge and physical wedge 15$^\circ$, 45$^\circ$. Dose profiles normalized to dose at the maximum depth. Results: At 6 MV photon beam, the average peripheral dose of dynamic wedge were lower by 1.4% and 0.1%. At 15 MV photon beam, the peripheral dose of dynamic wedge were lower by maximum 1.6%. Conclusion: This study showed that dynamic wedge can reduce scattered dose of clinical organ close to the field edge and reduced treatment time. The wedge systems produce significantly different peripheral dose that should be considered in properly choosing a wedge system for clinical use.

  • PDF