• Title/Summary/Keyword: PTFE membrane

Search Result 141, Processing Time 0.031 seconds

Surface Modification of Poly(tetrafluoroethylene) (PTFE) Membranes (PTFE 막의 표면 개질 방법)

  • Jun Kyu Jang;Chaewon Youn;Ho Bum Park
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this review, surface modification methods of hydrophobic poly(tetrafluoroethylene) (PTFE) membrane are introduced and their improved hydrophilicity results are discussed. Fluoropolymer based membranes, represented by PTFE membranes have been used in various membrane separation processes, including membrane distillation, oil separation and gas separation. However, despite excellent physical properties such as chemical resistance, heat resistance and high mechanical strength, the strong hydrophobicity of PTFE membrane surface has become a challenging factor in expanding its membrane separation application. To improve the separation performance of PTFE membranes, wet chemical, hydrophilic coating, plasma, irradiation and atomic layer deposition are applied, modifying the surface property of PTFE membranes while maintaining their inherent properties.

A Comparative Study of Clinical Healing Aspects in GTR Treatment on Class II Furcation Defects (치근이개부 II급 병변에서 조직유도재생술의 임상적 치유양상의 비교)

  • Moon, Sun-Young;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.519-540
    • /
    • 1999
  • The purpose of this study is to compare the healing aspects of the use of ePTFE membrane alone versus combination treatment of ePTFE membrane and bone grafts on class II furcation defects. Seventeen defects were applied ePTFE membrane alone on mxillary molar buccal class II furcation defects as Group I, seventeen defects were applied ePTFE membrane and bone grafts on maxillary molar buccal class II furcation defects as Group II, twenty-three defects were applied ePTFE membrane alone on mandibular molar buccal class II furcation defects as Group III, twenty defects were applied ePTFE membrane and bone grafts on mandibular molar buccal class II furcation defects as Group IV . Measurements were made to determine clinical attachment level, probing depth, gingival depth, SBI, mobility at baseline, 3, 6, 12 months postoperatively. Additional measurements were made to determine membrane exposure level at surgery, 1, 2, 6 weeks postoperatively. And then healing patterns and postoperative complications were evaluated. The result as follows : There were statistically significant differences in probing depth reduction, clinical attachment gain, mobility reduction at values of 3, 6, 12 months postoperatively compared to values of baseline(p<0.05), whereas no significant differences in SBI and gingival recession. In group II, membrane exposure level was increased at 1, 2, 6 weeks postoperatively compared to value of baseline(p<0.05). There were statistically significant differences in changes of probing depth at 3, 6, 12 months postoperatively in combination groups of ePTFE membrane and bone graft compared to groups of ePTFE membrane alone(p<0.05). The vast majority of cases fall into typical healing and delayed healing response when membranes were removed in all groups. Pain and swelling were common postoperative complications. In conclusion, this study was showed more effective healing aspects in combination treatment of ePTFE membrane and bone graft than ePTFE membrane alone and on mandibular molar class II furcation defects than maxillary molar.

  • PDF

The Effect of e-PTFE Membrane Exposure on the Initial Healing of Periodontal Tissue in GTR Procedure (e-PTFE 차단막을 이용한 조직유도재생술시 e-PTFE 차단막의 노출이 치주조직의 초기치유에 미치는 영향)

  • Moon, Ik-Sang;Kim, Ji-Eun;Song, Kun-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.553-560
    • /
    • 1999
  • The aim of the present study was to evaluate the effect of the expanded polytetrafluoroethylene (e-PTFE) membrane exposure on the initial healing of the periodontal tissue in guided tissue regeneration (GTR) procedure. 90 sites selected from 90 patients were treated with gingival flap surgery supported by an e-PTFE membrane. The material included angular bony defects with probing attachment loss of > 5mm or degree II furcation involvement. Treated sites were classified with membrane exposure group and non-exposure group at membrane removal and evaluated healing type. The results were obtained as follows. 1. e-PTFE membrane was exposed at 61 sites (67.8%) among 90 sites. 2. Thirteen sites (14.4%) depicted rapid healing type, 65 sites (72.2%) depicted typical healing type, 9 sites (10%) showed delayed healing type and 3 sites (3.3%) were categorized as adversed healing type. 3. In e-PTFE membrane exposure group, 1 site (1.6%), 51 sites (83.6%), 6 sites (9.8%) and 3 sites (4.9%) showed rapid healing type, typical healing type, delayed healing type and adverse healing type respectively. 4. In e-PTFE membrane non-exposure group, 12 sites (41.3%), 14 sites (48.3%) and 3 sites (10.3%) showed rapid healing type, typical healing type and delayed healing type respectively. Adverse healing type was not observed. 5. The rate of favourable healing between e-PTFE membrane exposure group and non-exposure group was not statistically significant(p=0.56). These results suggest that the prevention of membrane exposure may be important to obtain rapid healing type. However favourable healing could be obtained with stringent infection control program even if membrane was exposed.

  • PDF

Osteopromotive effect of Titanium Reinforced-ePTFE membrane (티타늄강화 차폐막의 골유도 재생 효과)

  • Lee, Jean;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.4
    • /
    • pp.711-722
    • /
    • 2004
  • The purpose of this study is to evaluate the regenerated bone histollogically using titanium reinforced ePTFE(TR-ePTFE) membrane and to investigate cell occlusiveness, wound stabilization and tissue integration of TR-ePTFE membrane. Adult male rabbits (mean BW 2kg) and TR9W (W.L.Gore&Associate.INC,USA) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. TR-ePTFE membrane was applied to defect. Then guided bone regeneration was carried out using TR-ePTFE membrane and resorbable suture. At 2,4,8,12 weeks after the surgery, animals were sacrificed. Nondecalcified specimens were processed for histologic analysis. The result and conclusion of this study were as follows: 1. TR-ePTFE membrane had good ability of biocompatibility and cell occlusiveness. 2. space making for guided bone regenerayion was good at TR-ePTFE membrane. 3. Tissue integration was not good at TR-ePTFE membrane. So, wound stabilization was not good. 4. At 8 weeks, 12 weeks after GBR procedure, bone formation was seen. From the above results, TR-ePTFE membrane fixed tightiy on alveolar bone might be recommended for the early bone formation.

Phosphoric Acid-doped SDF-F/poly(VI-co-MPS)/PTFE Membrane for a High Temperature Proton Exchange Membrane Fuel Cell

  • Lee, Jong-Won;Yi, Cheol-Woo;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1902-1906
    • /
    • 2011
  • Sulfonated poly(fluorinated arylene ether)s (SDF-F)/poly[(N-vinylimidazole)-co-(3-methacryloxypropyl-trimethoxysilane)] (poly(VI-co-MPS))/poly(tetrafluoroethylene) (PTFE) is prepared for a high temperature proton exchange membrane fuel cell (PEMFC). The reaction of the membrane with phosphoric acid forms silicate phosphor, as a chemically bound proton carrier, in the membrane. Thus-formed silicate phosphor, nitrogen in the imidazole ring, and physically bound phosphoric acid act as proton carriers in the membrane. The physico-chemical and electrochemical properties of the membrane are investigated by various analytical tools. The phosphoric acid uptake and proton conductivity of the SDF-F/poly(VI-co-MPS)/PTFE membrane are higher than those of SDF-F/PVI/PTFE. The power densities of cells with SDF-F/poly(VI-co-MPS)/PTFE membranes at 0.6 V are 286, 302, and 320 mW $cm^{-2}$ at 150, 170, and 190 $^{\circ}C$, respectively. Overall, the SDFF/poly(VI-co-MPS)/PTFE membrane is one of the candidates for anhydrous HT-PEMFCs with enhanced mechanical strength and improved cell performance.

Separation Characteristics of Oxygen Isotopes with Hydrophobic PTFE Membranes (소수성 PTFE 막의 산소동위원소 분리특성)

  • 김재우;박상언;김택수;정도영;고광훈;박경배
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.154-161
    • /
    • 2003
  • We measured the permeation characteristics of water with the hydrophobic PTFE membranes dependent on water temperature to confirm the separation of oxygen isotopes using Air Gap Membrane Distillation (AGMD) and Vacuum Enhanced Membrane Distillation (VEMD). Isotopic concentrations of $H_2^{16}O$ and $H_2^{18}O$ of the permeated water vapor were measured by Diode Laser Absorption Spectroscopy. Concentrations of the heavy oxygen isotopes in the permeated water vapor were decreased. Isotope separation coefficients for the hydrophobic PTFE membranes were 1.004∼1.01 depending on the experimental conditions. We observed the effects of air in membrane pores on the oxygen isotope separation. Isotope separation coefficients for the hydrophobic PTFE membranes without air in pores are higher than those for the membrane with air in pores.

A Study of Bi-Axial Stretching Process for the PTFE Membrane(I) (이축연신 PTFE 막 제조 공정에 관한 연구(I))

  • Shin, Hong-Chul;Kim, Sung-Chul;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.42 no.2
    • /
    • pp.86-92
    • /
    • 2007
  • A few of polytetrafluoroethylene(PTFE) membranes and PTFE fine powders were analyzed to chooce an optimum resin. The bi-axial stretching process was developed to set up the foundation of the preparation process and control the pore size and porosity of PTFE membrane. The pretreatment of PTFE fine powder used in the preparation process for PTFE was needed. The mixing of additives, the ripening of mixture, paste extrusion process of ripening powder, calendering process and the bi-axial process were conducted for controlling pore size, porosity and thckness of membrane. The aftertreatment which strengthened the mechanical properties was necessary. The control of pore size and porosity of the membrane were determined. The ratio of PTFE fine powder and additives at the paste extrusion process, the ripening time, the ripening temperature and the parameters of temperature and pressure at the paste extrusion process were optimized.

Filtration Characteristics of Paticulate Matter at Bag Filters Coated with PTFE Membrane During Off-Line Pulsing (PTFE membrane이 코팅된 여과백의 off-line 탈진시 미세먼지 집진 특성)

  • Kim, Joung-Hun;Moon, Il-Shik;Hwang, Min-Young;Kim, Ryang-Gyoon;Ko, Daekwun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.391-402
    • /
    • 2017
  • Particulate matter becomes an important issue in the environmental society recently so that it is necessary to evaluate that the commercial application of baghouse systems for effective control of fine particulates is viable. A laboratory-scale baghouse experimental apparatus with filter bags made of PTFE felt or PTFE felt coated with PTFE membrane is used to investigate the filtration performances of fine particulates. Experiments by changing filtration velocity, inlet dust concentration, and average dust particle size show that the dust collection efficiency becomes higher at lower filtration velocity, higher inlet dust concentration and larger average dust particle size. The total pressure drop through the filter media and dust layer becomes higher at higher filtration velocity and higher inlet dust concentration. The dust collection efficiency is higher and the pressure drop is lower at a baghouse with filter bags coated with PTFE membrane than that without membrane coating. From the result that the dust collection efficiency of $PM_{2.5}$ in a reasonable filtration velocity range during off-line pulsing at a baghouse with PTFE felt bag filters coated with PTFE membrane is as high as 99.99%, it is confirmed that the use of baghouse is an effective measure to control the fine particulates.

The Comparative Study On Scanning Electron Microscopic Findings Of Retrived ePTFE Membrane With Clinical Conditions (제거된 ePTFE 막의 주사전자현미경적 소견과 치주임상상태의 비교연구)

  • Park, Jeong-Min;Choi, Byung-Son;Lee, Seok-Cho;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.133-142
    • /
    • 1996
  • Ten intrabony defects in 10 patients were treated by flap surgery including root surface debridement and placement of an expanded polytetrafluoroethylene(ePTFE) membrane. The membranes were removed after 4-6 weeks. This study was performed to examine the retrived ePTFE membrane by scanning electron microscopy(SEM) for bacterial contamination and adherent connective tissue elements, and to compare it with clinical conditions. The cervical portion of the membrane, which in most cases had become partially exposed to the oral cavity, had a bacterial deposit. Small bacterial colonies and a scatter of single cells in some instances extended into the apical portion of the membrane. Fibroblast-like cells, erythrocytes and fibrous structures were seen in the apical portion of the membrane. Outer surface of membrane tends to more bacterial contamination than inner surface(p<0.01), and upper portions more than lower portions(P<0.01). Comparison of ultrastructural findings and clinical conditions revealed that extent of bacterial contamination of the membrane correlated with gingival inflammation and extent of membrane exposure, but it was not significant statistically. The results suggested that gingival inflammation and membrane exposure affect periodontal regeneration by the use of ePTFE membrane.

  • PDF

Development of PTFE Membrane Bio-reactor (MBR) for Integrating Wastewater Reclamation and Rainwater Harvesting (PTFE막을 이용한 빗물 중수 통합형 MBR 시스템 개발 및 성능 평가)

  • Lee, Taeseop;Kim, Youngjin;Ham, Sangwoo;Hong, Seungkwan;Park, Byungjoo;Shin, Yongil;Jung, Insik
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.269-276
    • /
    • 2012
  • The surface characteristics and performance of PTFE (polytetrafluoroethylene) hollow fiber membranes have been systematically investigated at lab- and pilot-scale to assess their application to membrane-bioreactor, particularly for integrating wastewater reclamation and rainwater harvesting. The PTFE membrane expressed some surface features, such as hydrophobicity, which might enhance membrane fouling. However, lab-scale performance and cleaning experiments under various conditions demonstrated that the PTFE membrane could produce the desirable water flux with good cleaning efficiency, implying easy operation and maintenance due to superior chemical resistance of PTFE membranes. Most of effluent water qualities were met with Korean standard for discharge and reuse, except color. Color level was further reduced by blending with rainwater at 75:25 ratio. Based on the lab-scale experimental results, the pilot plant was designed and operated. Pilot operation clearly showed sTable performance with satisfactory water quality, suggesting that PTFE membrane could be applied for decentralized MBR integrated with rainwater use.