• 제목/요약/키워드: PT strands

검색결과 7건 처리시간 0.018초

긴장재 적용조건에 따른 셀프센터링 접합부의 구조성능에 관한 연구 (Structural Performance on the Self-centering Connections with Different Conditions of PT Strands)

  • 정미진;윤성기
    • 한국강구조학회 논문집
    • /
    • 제29권1호
    • /
    • pp.73-80
    • /
    • 2017
  • 잔류변형이 효과적으로 제어되어 곧은 상태를 유지시켜주는 셀프센터링 접합부에 대하여 반복가력 해석을 시행했으며 초기 긴장력과 긴장재의 개수에 따른 구조적 거동을 분석하였다. 셀프센터링 효과를 발휘하기 위해서 초기 긴장력은 ㄱ형강의 항복모멘트보다 커야하며 주요부재의 손상을 최소화 하기 위해서 압축상쇄모멘트는 보의 전소성모멘트의 0.35이하로 하는 것이 타당하다고 판단된다. 또한 긴장재 개수가 증가할수록 단일 긴장재에 작용하는 초기 긴장력이 감소하여 셀프센터링 성능을 확보할 수 있으므로 긴장재의 초기 긴장응력은 항복응력의 75% 이하로 하는 것을 제안하였다.

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

Determination of the repair grout volume to fill voids in external post-tensioned tendons

  • Im, Seok Been;Hurlebaus, Stefan
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.25-38
    • /
    • 2012
  • Recently, investigated failures of external post-tensioned (PT) tendons have called attention to the corrosion of strands in PT bridges, and the prevention of ongoing corrosion is required to secure their structural integrity. Since voids inside ducts can be a source for the ingress of water or deleterious chemicals, the vacuum grouting (VG) method and a volumeter for estimating amount of repair grouts were employed to fill voided ducts. However, the VG method is expensive and time-consuming for infield application because it requires an air-tight condition of entire ducts. Thus, latest research assessed three different repair grouting methods, and the pressure vacuum grouting (PVG) method was recommended in the field because it showed good filling capability in voided ducts and did not require an air-tight condition. Thus, a new method is required to estimate the volume of repair grouts because the PVG method is not applied in air-tight ducts. This research assesses the relationship between voided areas on ducts identified with soundings and required grout volume for repair using experimental results. The results show that the proposed equations and assumptions for estimating repair grout volume provide a sufficient amount of repair grouts for filling voided ducts.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

Evaluating seismic demands for segmental columns with low energy dissipation capacity

  • Nikbakht, Ehsan;Rashid, Khalim;Mohseni, Iman;Hejazi, Farzad
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1277-1297
    • /
    • 2015
  • Post-tensioned precast segmental bridge columns have shown high level of strength and ductility, and low residual displacement, which makes them suffer minor damage after earthquake loading; however, there is still lack of confidence on their lateral response against severe seismic loading due in part to their low energy dissipation capacity. This study investigates the influence of major design factors such as post-tensioning force level, strands position, columns aspect ratio, steel jacket and mild steel ratio on seismic performance of self-centring segmental bridge columns in terms of lateral strength, residual displacement and lateral peak displacement. Seismic analyses show that increasing the continuous mild steel ratio improves the lateral peak displacement of the self-centring columns at different levels of post-tensioning (PT) forces. Such an increase in steel ratio reduces the residual drift in segmental columns with higher aspect ratio more considerably. Suggestions are proposed for the design of self-centring segmental columns with various aspect ratios at different target drifts.

고온을 받은 포스트텐션 콘크리트 보와 슬래브의 구조성능 연구 (A Study on the Structural Performance of Post Tensioned Concrete Beam and Slab Subjected to High Temperature)

  • 최광호;이중원
    • 콘크리트학회논문집
    • /
    • 제29권2호
    • /
    • pp.217-223
    • /
    • 2017
  • 이 연구는 포스트텐션 콘크리트 부재의 화재에 대한 구조성능 평가기술을 개발하기 위하여, 고온에 노출된 포스트텐션 보와 슬래브 부재의 구조특성과 평가기법을 내화 실험을 통하여 연구하였다. 내화 실험 시 가열은 전기로를 사용하였으며 수열온도를 $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$로 하였다. 이 연구로부터 고온을 받는 강연선은 응력 이완이 발생되고, 냉각되면서 긴장력의 일부 복원이 나타나는 것을 알 수 있었다. 포스트텐션 보와 슬래브 실험체가 각각 목표온도 도달 후 4시간 경과 시 포스트텐션 부재의 강연선의 잔존 긴장력을 살펴보면, 포스트텐션 보는 $400^{\circ}C$에서는 70%, $600^{\circ}C$에서는 10%, $800^{\circ}C$에서는 2%정도로 볼 수 있으며, 포스트텐션 슬래브는 $400^{\circ}C$에서는 94%, $600^{\circ}C$에서는 84.5%, $800^{\circ}C$에서는 62%정도로 나타났다. 상대적으로 포스트텐션 슬래브의 잔존 긴장력 손실이 작았던 이유는 슬래브가 고온에 일면 노출되었고, 강연선의 강도복원이 일어났기 때문으로 여겨졌다. 이 연구로부터 화재가 발생하는 경우 포스트텐션 부재는 강도 및 긴장력의 손실이 발생하고, 보강 시 손실된 내력만큼의 복원설계가 필요함을 확인하였다.

A strain-based wire breakage identification algorithm for unbonded PT tendons

  • Abdullah, A.B.M.;Rice, Jennifer A.;Hamilton, H.R.
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.415-433
    • /
    • 2015
  • Tendon failures in bonded post-tensioned bridges over the last two decades have motivated ongoing investigations on various aspects of unbonded tendons and their monitoring methods. Recent research shows that change of strain distribution in anchor heads can be useful in detecting wire breakage in unbonded construction. Based on this strain variation, this paper develops a damage detection model that enables an automated tendon monitoring system to identify and locate wire breaks. The first part of this paper presents an experimental program conducted to study the strain variation in anchor heads by generating wire breaks using a mechanical device. The program comprised three sets of tests with fully populated 19-strand anchor head and evaluated the levels of strain variation with number of wire breaks in different strands. The sensitivity of strain variation with wire breaks in circumferential and radial directions of anchor head in addition to the axial direction (parallel to the strand) were investigated and the measured axial strains were found to be the most sensitive. The second part of the paper focuses on formulating the wire breakage detection framework. A finite element model of the anchorage assembly was created to demonstrate the algorithm as well as to investigate the asymmetric strain distribution observed in experimental results. In addition, as almost inevitably encountered during tendon stressing, the effects of differential wedge seating on the proposed model have been analyzed. A sensitivity analysis has been performed at the end to assess the robustness of the model with random measurement errors.