• Title/Summary/Keyword: PSC I girder

Search Result 79, Processing Time 0.028 seconds

Analysis of Lateral Behavior of PSC Bridge Girders under Wind Load During Construction (시공 중 풍하중에 의한 PSC 교량 거더의 횡방향 거동 해석)

  • Lee, Jong-Han;Kim, Kyung Hwan;Cho, Baiksoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.377-385
    • /
    • 2015
  • The span-lengthening of PSC I girder has increased the risk of lateral instability of the girder with the increases in the aspect ratio and self-weight of the girder. Recently, collapses of PSC I girder during construction raise the necessity of evaluating the lateral instability of the girder. Thus, the present study evaluated the lateral behavior and instability of PSC I girders under wind load, regarded as one of the main causes of the roll-over collapse during construction. Lateral instability of the girder is mainly dependent on the length of the girder and the stiffness of the support. The analysis results of this study showed the decrease in the critical wind load and the increase in the critical deformation and angle of the girder, leading to the lateral instability of the girder. Finally, this study proposed analytical equations that can predict the critical amount of wind load and lateral deformation of the girder, which would provide quantitative management values to maintain lateral stability of PSC I girder during construction.

A Study on the Design Parameters of the PSC I-Type Girders for Long Span Bridges (장지간 교량을 위한 PSC-I형 거더의 단면 설계변수 연구)

  • 심종성;오홍섭;김민수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.13-22
    • /
    • 2000
  • In order to resolve the problem of increasing traffic entailed by the economic development, road system is reorganization and new highways are built, and long span bridges over 40m are being constructed in environmental and aesthetic considerations. Most long span bridges that are currently being constructed are in general steel box girder and preflex girder bridges; however these types of breiges are less efficiency than PSC I-type girder bridges in terms of construction cost and maintenance. Therefore, in these study, structural efficiency of PSC I-type girders based on section parameters, concrete compressive strength and other design parameter is observed to develope new PSC I-type girder for long span bridges. As a results of analysis, most important design parameters that control the stress of the girder are found to be the top flange width and the height of girder. In this light, the relationship between the two variables is determined and cross-section details of the girder that most appropriates for the long span bridges are proposed. The use of high strength concrete appears to increase the general design span however the increase rate of the span from increasing concrete ultimate strength appears to be reduced depending on the span. Also, the optimal girder spacing is determined through the parameter studies of design span using the proposed girder.

Evaluation of the Load Carrying Capacity of Existing Bridges with Long Span Hollow Web Prestressed Concrete Girder by Static Load Test (정적재하시험을 통한 장경간 중공 웨브 PSC 거더교의 내하력 평가)

  • Kim, Seong-Kyum;Jang, Pan-Ki;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.97-102
    • /
    • 2018
  • Conventional PSC I type girders were adversely affected by the self - weight of concrete, anchorage, prestressing. In order to overcome this problem, PSC girder was constructed with a hollow in the web and developed a hollow web PSC type I girder which is applicable to 50 - 70m span by multistage stressing and then actually long span hollow web PSC girder bridge was constructed. In this study, the results of Static Load Test and the Finite Element Analysis of the hollow web PSC I girder bridges were compared and analyzed, and the Load Carrying Capacity and safety of PSC girder bridges were evaluated. The Static Load Test and the numerical analysis results of this bridge showed similar tendency and the behavior of the hollow web PSC I girder was well simulated. The entire girders of the bridges had sufficient Load Carrying Capacity under the live load design condition and the bridges satisfied the safety and confirmed the appropriateness of the construction.

An Experimental Study on the Precast Segmented PSC Girder with I-Shape and Box-Shape Cross-Section (I형 단면과 BOX형 단면을 갖는 프리캐스트 분절 PSC 거더의 실험적 연구)

  • Kim, Sun-Hee;Lee, Seng-Hoo;Park, Joon-Seok;Cheon, Jinuk;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.8-16
    • /
    • 2015
  • Prestressed concrete (PSC) is a method in which prestressed tendon is placed inside and/or outside the reinforced concrete member and the compressive force applied to the concrete in advance to enhance the engineering properties of concrete member which is weak under tension. In this paper we suggested the precast PSC girder assembled with segments of portable size and weight at the factory. The segments of precast PSC girder will be delivered and assembled as a unit of PSC girder at the site. Consequently, we suggested new-type of precast segmented PSC girder with different shapes of segment cross-section (i.e., I-shape, Box-shape). To mitigate the problems associated with the field splice between the segments of precast PSC girder anchor system is attached near the neutral axis of the girder and relatively uniform compression throughout the girder cross-section is applied. Prior to the experimental investigation, analytical investigation on the structural behavior of precast PSC girder was performed and the serviceability (deflection) and safety (strength) of the girder were confirmed. In addition, 4-point bending test on the girder was conducted to investigate the structural performance under bending. From the experimental investigation, it was found that the precast PSC girder spliced with 3 and 5 segments has sufficient in serviceability and safety conditions and it was also observed that the point where the segments spliced has no defects and the girder behaves as a unit.

A Study on the Flexural Behavior of Proposed Spliced PSC-I Type Girder (제안된 Spliced PSC-I형 거더의 휨거동에 관한 연구)

  • 심종성;오홍섭
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.13-23
    • /
    • 2000
  • In this study, an flexural test on half-scale spliced PSC-I girder was conducted to verify the efficiency of the long span spliced girder as suggested by the Korean Highway Design Specification. The experimental results showed that the specimens developed a complex failure mode due to flexural-compression and torsional stress. The cracking moment of each girder was higher the experiment than was calulated by the ACI and the ultimate strength were the almost same. To estimate the safety and the structural efficiency of the spliced girder, the proposed Yielding Resistance Index(YRI) and ductility index by American Concrete Institutes were used based on the energy concept. The proposed YRI defined the ratio of crack resisting energy and the total energy calculated from load-displacement relationship. Based on the analysis of YRI and ductility index, the flexural behavior of the spliced girder was found to be efficient. Through the experimental results, the structural behavior of proposed spliced PSC I-type girder for long span bridge was found to be more efficient than the exsisting PSC I-type girders.

Optimal Design of PSC-I Girder Bridge Considering Life Cycle Cost (생애주기비용을 고려한 PSC-I형 교량의 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the procedure for the optimal design of a PSC-I girder bridge considering life cycle cost (LCC). The load carrying capacity curves for the concrete deck, PSC-I girder and $\pi$-type pier were derived and used for the estimate of service lives. Total life cycle cost for the service life was calculated as sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The advanced First Order Second Moment method was used to estimate the damage cost. The optimization method was applied to the design of PSC-I girder bridge. The objective function was set to the annual cost, which is defined by dividing the total life cycle cost by the service life, and constraints were formulated on the basis of Korean Standards. The optimal design was performed for various service lives and the effects of design factors were investigated.

Am Experimental Study on the Flexural Behavior after Crack Initiation of PSC I-Girder (PSC-I 거더의 균열 발생 이후의 휨거동에 관한 실험적 연구)

  • 심종성;오홍섭;김민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.541-544
    • /
    • 1999
  • The main objective of this study is to develope the PSC-I girder for long span bridge. This study investigates the structural behavior of Postcracking stage and efficiency of proposed PSC-I girder using 1/2 scaled prototype beam specimen. Three specimens are tested under three point static loading system. Ideally, the Load-displacement relationship is trilinear. The crack patterns and failure mode of each specimen are reported in this paper and they are compared to each other with ductility and strength.

  • PDF

Analysis of Behavior due to Tendon Damage for Maintenance of PSC I Girder Bridge (PSC I 거더교 유지관리를 위한 긴장재 손상에 따른 거동 분석)

  • Jongho Park;Jinwoong Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.53-60
    • /
    • 2024
  • Prestressed concrete (PSC) bridges are vulnerable to corrosion and fracture of tendons, and in particular, structures using the internal post-tensioned with grouted system have difficulties in maintenance due to limitations of inspection. In this study, the actual behavior of PSC I girder bridge was analyzed according to tendon damage. The target PSC I girder bridge, an decommissioned highway bridge of upper and lower bridges, had the service period of 33 years and 20 years, respectively. Deflection and concrete strain were measured according to the location of damaged tendon and loading method. Regardless of the age of the bridge, its structural performance decreased when the damaged tendon was closer to the center of the girder. The change in behavior increased as the truck load approached to the girder where the tendon cut. If the load was applied to the adjacent girder where the tendon was cut, the structural performance was likely to be maintained due to the influence of the entire structural system. The change in deflection was difficult to observe visually, while the concrete strain exceeded the cracking strain. Therefore, it is recommended that future monitoring and inspection of PSC I girder bridges should focus on concrete strain or cracking.

A Study on the Evaluation Methods of the Load-Carrying Capacity of PSC I Type Girder Considering Material Nonlinear (재료 비선형을 고려한 PSC I형 거더교의 내하력평가 기법에 관한 고찰)

  • 심종성;김규선;문도영;주민관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.187-192
    • /
    • 2003
  • Nowadays, It has adapted both Ultimate Strength Design(USD) and Allowable Stress Design(ASD) Method evaluating load-carrying capacity of PSC I Type Girder Bridge. But it has confused because the each method has brought some different results. This study shows some results of loading test of the PSC I type Girder Bridge and analyzed the structural behavior by FEM analysis considering material nonlinear. Parametric study of effective prestress of post tendon is performed and compared to results of loading test.

  • PDF

Design of PSC-I Bridge with Widely Spaced Girder based on Parametric Study (변수연구를 통한 소수주형 PSC-I 거더 설계)

  • 심종성;김민수;김영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.507-512
    • /
    • 2002
  • Prestressed concrete I-girders were used in the bridge applications in the early 1950s. During the last four decades, the most widely used girder length of bridges have been below 30 meters. The main objective of this study is to develope the alternative section for widely spaced girder of 30 meters span bridge. Girder spacing, the number of strands and compressive strength of concrete are major parameters for widely spaced girders. The optimal girder spacing is determined through the parameter studies of design using widely spaced girders. 30m span bridges of widely girder spacing must use high-strength concrete. Although the basic unit cost of concrete is higher for high-strength concrete, it may be partially or even fully offset by reduced quantities of concrete as result of the smaller number of girders used. High-strength concrete girders have more prestressing strands per girder, but the total number of strands for all of the girders is less than that required for the larger number of normal-strength concrete girders. It could design PSC-I Birdge with widely spaced girder owing to high-strength concrete.

  • PDF