• 제목/요약/키워드: PROPULSIVE IMPULSE

검색결과 11건 처리시간 0.021초

축구화의 운동역학적 특성연구 (Biomechanical Research of Soccer Footwear)

  • 진영완
    • 한국운동역학회지
    • /
    • 제15권2호
    • /
    • pp.31-39
    • /
    • 2005
  • The Purpose of this study was to reveal the biomechanical difference of two soccer footwear(soft ground footwear and hard ground footwear). Secondly, the purpose of this study was to clarify how each type of soccer footwear effects soccer players, which will provide scientific data to coaches and players, to further prevent injuries and to improve each players capacity. The result of comparative analysis of two soccer footwear can be summarized as below. The comparison of the very first braking force at walking found distinctive factors in the statistical data(t=3.092, p<.05). Braking impulse of two difference footwear showed distinctive factors in the statistical data(t=2.542, p<.05). In comparing GRFz max(N), the result showed a statistically significant difference in the two soccer footwear at running(t=2.784, p<.05). In the maximum braking impulse(t=2.774, p<.05) and propulsive impulse for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. In the maximum braking force(t=3.270, p<.05) and propulsive force(t=4.956, p<.05) for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. Significant differences were not found in moment(rotational friction) with two difference soccer footwear(moment max; t=2.231, moment min; t=1.784).

Analytical Estimation of the Propulsive Performance of Pulse Detonation Engines

  • Endo, Takuma;Yatsufusa, Tomaaki;Taki, Shiro;Kasahara, Jiro;Matsuo, Akiko;Inaba, Kazuaki;Sato, Shigeru
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.506-512
    • /
    • 2004
  • We analytically estimated the propulsive performance of pulse detonation engines (PDEs) in three cases, which were (1) a fully-fueled simplified PDE, (2) a partially-fueled simplified PDE, and (3) a PDE optimized as a system. The results of the model analyses in the cases of (1) and (2) were in good agreement with published experimental data which were obtained by using simplified PDEs. The comparison between the results of the analyses of simplified PDEs and those of optimized PDE systems showed that specific impulse would become higher by about 10-20% due to PDE-system optimization.

  • PDF

보행스피드에 대한 상체 공헌도의 연령에 따른 변화 (Age-Related Change of Upper Body Contribution to Walking Speed)

  • 배영상
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.27-36
    • /
    • 2007
  • The purpose of this study was to investigate the effect of the upper body in order to increase a propulsive force in the old's walking. The subjects were each 10 males, the latter term of the aged and former term of the aged. There were three walking speeds of slow(about 5km/h), medium(about 6km/h), and maximum speed(about 7km/h). The subjects walking 11m were filmed the 5m section (from 3m to 8m) by 2-video cameras using three dimensional cinematography. And we computed different mechanical quantities and especially computed the relative momentum in order to achieve this study's aim. In this study, we was able to acquire some knowledge. The step length and step frequency increased in proportion to the walking speed, and the faster walking speed, the shorter ratio of supporting time( both legs supporting time/one step length time). When it was one leg support phase, the torso was indicated to generate the momentum in order to produce the propulsive force of walking. The upper and lower body had a cooperative relation for walking such as keeping step rate with the arms to legs and maintaining the body balance. The opposition phase for upward-and-downward direction of the torso and arms in walking was functioned to prevent the increase rapidly toward vertical direction of the center of gravity. The arms had contributed to coordinate the tempo of legs and the posture maintenance of the upper body. And by absorbing the relative momentum from the upper torso with arms to the lower torso, it had the rhythmical movement on upward-and-downward direction reducing the vertical reaction force. On account of the relations of absorption and generation of the propulsive force and the production of vertical impulse in the lower torso when walking by maximum speed, it was showed that the function of lower torso was come up as important problem for the mechanical posture stability and propulsive force coordination.

트레드밀 달리기시 신발 내부의 부하에 관한 연구 (In-shoe Loads during Treadmill Running)

  • 이기광
    • 한국운동역학회지
    • /
    • 제14권2호
    • /
    • pp.105-119
    • /
    • 2004
  • To enhance our understanding of the loads on the foot during treadmill running, we have used a pressure-sensitive insole system to determine pressure, rate of loading and impulse distributions on the plantar surface during treadmill running, both in minimally cushioned footwear and in cushioned shoes. This report includes pressure, rate of loading, impulse and contact time data from a study of ten subjects running on a treadmill at 4.0m/s. Among heel-toe runners, the highest peak pressures and highest rates of loading were observed under the centre of the heel and in the medial forefoot. The arch regions were only lightly loaded. Contact time was greater in the forefoot than in the heel. Two-thirds of the impulse recorded during the step was the result of forces applied through the forefoot, mostly in the region of the metatarsal heads. The distribution of loads in the shoe suggests that the load distributing properties of the cushioning system are most important in the centre of the heel, under the metatarsal heads and great toe. Shock attenuation is primarily required under the centre of the heel and to lesser extent under the metatarsal heads. Some energy dissipation may be desirable in the heel region because it causes shock to be absorbed with less force. All the 'propulsive' effort is applied through the forefoot. Therefore, this region should as resilient as possible.

Laser Propulsion in Free Flight

  • Kawahara, Takehiro;Watanabe, Keiko;Ogawa, Toshihiro;Sasoh, Akihiro
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.325-326
    • /
    • 2004
  • Experiment of laser propulsion in free flight has never been conducted. At Institute of Fluid Science (IFS), Tohoku University, propulsive impulse generation by focusing on a rest projectile was demonstrated. Based on the ideas obtained from this experiment, experiment of laser propulsion of a projectile in flight by focusing $CO_2$ laser beam is being prepared for. The objective velocity increment in experiment is about 50 m/s.

  • PDF

12주간의 수중 운동을 수행 한 여성노인의 장애물 보행 특성 (The Characteristics of Obstacle Gaits in Female Elders after 12 Weeks of an Aquatic Exercise Program)

  • 김석범;유연주
    • 한국운동역학회지
    • /
    • 제19권3호
    • /
    • pp.539-547
    • /
    • 2009
  • 본 연구의 목적은 낙상 예방을 위한 12주간의 수중 운동 수행 후 장애물 보행의 특성을 운동학 및 운동역학적으로 분석하는 것이다. 여성 노인 8명이 참여하였으며, 대상자들은 수중 운동 전 후에 네 높이의 장애물(0, 2.5, 5.1, & 15.2cm)을 자기선호 속도로 넘었다. 수중 운동 수행 후 고관절의 최대각, 최소각, ROM(Range Of Motion)이 유의하게 증가하였으며, Swing 과 Stance 국면에서 소요시간은 줄어들었다. 수중 운동 후 모든 높이에서 보폭은 유의하게 증가하였고, 보간은 줄어들었다. 수중 운동 후 장애물을 넘는 순간 장애물과 오른발 사이의 수직 최단거리는 증가하였고(15.2cm 장애물 제외), 장애물을 넘는 속도는 증가하였다. 수중 운동 수행 후 제동력, 추진력, 제동 운동량, 추진 운동량은 통계적으로 유의하게 변화하였다. 12주간의 수중 운동은 여성 노인의 근력과 평형성을 향상시켰으며 이는 낙상과 관련된 장애물 보행의 운동학 및 운동역학적 변인의 변화를 가져와 여성 노인들이 장애물을 안전하고 신속하게 넘을 수 있었다. 따라서 노인에게 보행 능력 향상과 낙상 예방 운동으로 수중 운동이 추천된다.

Hard Ground용 축구화와 Soft Ground용 축구화의 운동역학적 비교 (Biomechanical Comparison of HG(hard ground) Soccer Footwear and SG(soft ground) Soccer Footwear)

  • 진영완;신제민
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.75-83
    • /
    • 2006
  • The Purpose of this study was to compare the biomechanical difference of two soccer footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. The result of this study can be summarized after testing the two types of soccer footwear with comparative transforming heel angles and also with a pressure distribution in running. When a player's foot first touched the ground, the average difference of in/eversion was between 1.2 and 3.1 degrees for the two soccer shoes. In regards to maximum inversion and eversion of foot, maximum tibial rotation, and maximum and total movement of foot, the condition of barefoot and the two soccer shoes showed a small difference from 1.5 to 3.5 degrees and the difference among the subjects of study wasn't constant. In regards to maximum velocity of inversion and eversion running in one's bare feet showed much lower inversion velocity in comparison to putting on two types of soccer shoes and comparison of the average. Among some of the subjects, after putting on the two types of soccer shoes exceeded $97^{\circ}/s$ in maximum velocity of eversion. In the maximum braking impulse(t=2774, p<.05) and propulsive impulse for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. In the maximum braking force(t=3.270, p<.05) and propulsive force(t=4.956, p<.05) for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running.

Gender Dfferences in Ground Reaction Force Components

  • Park, Sang-Kyoon;Koo, Seungbum;Yoon, Suk-Hoon;Park, Sangheon;Kim, Yongcheol;Ryu, Ji-Seon
    • 한국운동역학회지
    • /
    • 제28권2호
    • /
    • pp.101-108
    • /
    • 2018
  • Objective: The aim of this study was to investigate gender differences in ground reaction force (GRF) components among different speeds of running. Method: Twenty men ($age=22.4{\pm}1.6years$, $mass=73.4{\pm}8.4kg$, $height=176.2{\pm}5.6cm$) and twenty women ($age=20.7{\pm}1.2years$, $mass=55.0{\pm}8.2kg$, $height=163.9{\pm}5.3cm$) participated in this study. All participants were asked to run on an instrumented dual belt treadmill (Bertec, USA) at 8, 12, and 16 km/h for 3 min, after warming up. GRF data were collected from 30 strides while they were running. Hypotheses were tested using one-way ANOVA, and level of significance was set at p-value <.05. Results: The time to passive peaks was significantly earlier in women than in men at three different running speeds (p<.05). Further, the impact loading rates were significantly greater in women than in men at three different running speeds (p<.05). Moreover, the propulsive peak at 8 km/h, which is the slowest running speed, was significantly greater in women than in men (p<.05), and the vertical impulse at 16 km/h, which is the fastest running speed, was significantly greater in men than in women (p<.05). The absolute anteroposterior impulse at 8 km/h was significantly greater in women than in men (p<.05). In addition, as the running speed increased, impact peak, active peak, impact loading rate, breaking peak, propulsive peak, and anteroposterior impulse were significantly increased, but vertical impulse was significantly decreased (p<.05). Conclusion: The impact loading rate is greater in women than in men regardless of different running speeds. Therefore, female runners might be exposed to the risk of potential injuries related to the bone and ligament. Moreover, increased running speeds could lead to higher possibility of running injuries.

액체로켓 추력실 설계 및 성능 분석을 위한 통합해석기법 개발 (Development of Numerical Framework for Design and Analysis of Liquid Rocket Thrust Chambers)

  • 김성구;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.34-37
    • /
    • 2009
  • 본 연구에서는 액체로켓 엔진용 재생냉각 추력실 내부에서 일어나는 연소와 냉각 과정을 통합된 방법으로 해석함으로서 초기 설계 단계에서 추력 성능, 냉각 특성, 무게 및 크기 간의 trade-off를 수행할 수 있는 수치해석 절차를 제시하였다. 또한 형상 설계, 성능 분석, 냉각 해석과 종합적인 설계 평가를 수행한 실제 적용 사례를 통해 설계 도구로서의 활용도와 신뢰도를 평가하였다.

  • PDF

유산소 운동능력 향상을 위한 중량물 부가 신발의 기능성 평가 (The Evaluation of an additional Weight Shoe's Function developed for the Improvement of Aerobic Capacity)

  • 곽창수;김희석
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.67-82
    • /
    • 2004
  • The purpose of this study was to evaluate the function and the safety of an additional weight shoe developed for the improvement of aerobic capacity, and to improve some problems found by subject's test for an additional weight shoe. The subjects employed for this study were 10 college students. 4 video cameras, AMTI force platform and Pedar insole pressure distribution measurement device were used to analyze foot motions. The results of the study were as follows: 1 The initial achilles tendon angle and initial rearfoot pronation angle of an additional weight shoe during walking were 183.7 deg and 2.33 deg, respectively, and smaller than a barefoot condition. Maximum achilles tendon angle and the angular displacement of achilles tendon angle were 185.35 deg and 4.21 deg respectively, and smaller than barefoot condition. Thus rearfoot stability variables were within the permission value for safety. 2. Maximal anterior posterior ground reaction force of additional weight shoe was appeared to be 1.01-1.2 B.W., and was bigger than a barefoot condition. The time to MAPGRF of an additional weight shoe was longer than a barefoot condition. Maximal vertical ground reaction force of additional weight shoe was appeared to be 2.3-2.7 B.W., and was bigger than a barefoot condition in propulsive force region. But A barefoot condition was bigger in braking force region. The time to MVGRF of an additional weight shoe was longer than a barefoot condition. 3. Regional peak pressure was bigger in medial region than in lateral region in contrast to conventional running shoes. The instant of regional peak pressure was M1-M2-M7-M4-M6-M5 -M3, and differed form conventional running shoes. Regional Impulse was shown to be abnormal patterns. There were no evidences that an additional weight shoe would have function and safety problems through the analysis of rearfoot control and ground reaction force during walking. However, There appeared to have small problem in pressure distribution. It was considered that it would be possible to redesign the inner geometry. This study could not find out safety on human body and exercise effects because of short term research period. Therefore long term study on subject's test would be necessary in the future study.