• 제목/요약/키워드: PROPULSIVE FORCE

검색결과 67건 처리시간 0.025초

The Interlimb Coordination During Movement Initiation From a Quiet Stance: Manipulation of Swing Limb Kinetics and Kinematics -A Preliminary Study

  • Kim, Hyeong-Dong;Yoon, Bum-Chull
    • 한국전문물리치료학회지
    • /
    • 제13권4호
    • /
    • pp.79-86
    • /
    • 2006
  • The purpose of the current experiment was to describe interlimb coordination when swing limb conditions are being manipulated by constraining step length or by adding a 5 or 10 pound weight to the swing limb distally. Subjects were asked to begin walking with the right limb to land on the primary target (normal step length) that is 10 cm in diameter. However, if, during movement, the light was illuminated, then the subject had to step on one of the secondary targets (long and short step length). These three step length conditions were repeated while wearing a 5 pound ankle weight and then when wearing a 10 pound ankle weight. Ground reaction force (GRF) data indicated that there were changes in the forces and slopes of the swing and stance Fx GRFs. Long stepping subjects had to increase the propulsive force required to increase step length. Consequently, swing and stance toe-off greatly increased in the long step length condition. Short step length subjects had to adequately adjust step length, which decreased the speed of gait initiation. Loading the swing limb decreased the force and slope of the swing limb. Swing and stance toe-off was longest for the long step length condition, but there was a small difference of temporal events between no weight and weight condition. It appears that subjects modulated GRFs and temporal events differently to achieve the peak acceleration force of the swing and stance limb in response to different tasks. The findings from the current study provide preliminary data, which can be used to further investigate how we modulate forces during voluntary movement from a quiet stance. This information may be important if we are to use this or a similar task to evaluate gait patterns of the elderly and patient populations.

  • PDF

한국무용 숙련자와 미숙련자에 따른 폐기능, 부드러움, 그리고 지면반력의 차이 분석 (The Analysis of Differences in Pulmonary Functions, Jerk Cost, and Ground Reaction Force Depending on Professional and Amateur Dancers in Korea Dance)

  • 박양선;김미예;이성노
    • 한국운동역학회지
    • /
    • 제24권4호
    • /
    • pp.349-357
    • /
    • 2014
  • The purpose of this study was to examine the differences in the performance of dancing motions depending on the level of skill by investigating pulmonary functions, ground reaction force, and jerk cost. The subjects of this study were 12 professional dancers (career: 16 yrs) and 12 amateur dancers (career: 9 yrs) who had similar physical conditions. We selected four motion phases which included the diagonal line motion, the deep flexion motion, the breath motion, and the turn motion with one leg after a small step walking motion, with Goodguri Jangdan. In the experiment, 6 infrared cameras were installed in order to analyze the value of the jerk costs and the force plate form. Finally, we measured the pulmonary functions of the subjects. For data analysis, independent t-tests according to each event, were carried out in the data processing. According to the results of FVC % Predicted, the professional dancers showed greater lung capacities than the amateur dancers, indicating that the level of dancing skill influences lung capacity. Based on the result of the balance test, the professional dancers used more vertical power than did the amateur dancers when performing maximal flexion motion. The professional dancers used a propulsive force of pushing their body forward by keeping the center of body higher while the amateur dancers used a braking power by keeping their bodies backward. When performing medial-lateral movements, the amateur dancers were less stable than the professional dancers. There were no differences in values of jerk costs between the amateur dancers and the professional dancers.

Gender Dfferences in Ground Reaction Force Components

  • Park, Sang-Kyoon;Koo, Seungbum;Yoon, Suk-Hoon;Park, Sangheon;Kim, Yongcheol;Ryu, Ji-Seon
    • 한국운동역학회지
    • /
    • 제28권2호
    • /
    • pp.101-108
    • /
    • 2018
  • Objective: The aim of this study was to investigate gender differences in ground reaction force (GRF) components among different speeds of running. Method: Twenty men ($age=22.4{\pm}1.6years$, $mass=73.4{\pm}8.4kg$, $height=176.2{\pm}5.6cm$) and twenty women ($age=20.7{\pm}1.2years$, $mass=55.0{\pm}8.2kg$, $height=163.9{\pm}5.3cm$) participated in this study. All participants were asked to run on an instrumented dual belt treadmill (Bertec, USA) at 8, 12, and 16 km/h for 3 min, after warming up. GRF data were collected from 30 strides while they were running. Hypotheses were tested using one-way ANOVA, and level of significance was set at p-value <.05. Results: The time to passive peaks was significantly earlier in women than in men at three different running speeds (p<.05). Further, the impact loading rates were significantly greater in women than in men at three different running speeds (p<.05). Moreover, the propulsive peak at 8 km/h, which is the slowest running speed, was significantly greater in women than in men (p<.05), and the vertical impulse at 16 km/h, which is the fastest running speed, was significantly greater in men than in women (p<.05). The absolute anteroposterior impulse at 8 km/h was significantly greater in women than in men (p<.05). In addition, as the running speed increased, impact peak, active peak, impact loading rate, breaking peak, propulsive peak, and anteroposterior impulse were significantly increased, but vertical impulse was significantly decreased (p<.05). Conclusion: The impact loading rate is greater in women than in men regardless of different running speeds. Therefore, female runners might be exposed to the risk of potential injuries related to the bone and ligament. Moreover, increased running speeds could lead to higher possibility of running injuries.

선미노(船尾櫓)의 추력발생기구(推力發生機構) 규명(糾明)을 위한 실험적(實驗的) 연구(硏究) (An Experimental Study on the Propulsive Characteristics of Sculls)

  • 김효철;이봉구;임창규
    • 대한조선학회지
    • /
    • 제26권2호
    • /
    • pp.13-24
    • /
    • 1989
  • 인력(人力)을 추진동력(推進動力)으로 하는 소형선(小型船)에서 쓰이고 있는 선미노(船尾櫓)의 기하학적(幾何學的)인 특성(特性)과 조작방법(操作方法)이 오래전부터 전승(傳承)되어 왔으나 그 내용이 구체적으로 밝혀져 있지 않음은 물론이고 추력발생기구(推力發生機構)에 대한 과학적(科學的)인 조사(調査)가 이루어진 바 없다. 선미노(船尾櫓)의 사용실태(使用實態)를 조사(調査)하여 기하학적(幾何學的)인 특성(特性)을 조사(調査)하고 숙련(熟練)된 擄手(櫓手)가 선미노(船尾櫓)를 조작(操作)할 때 노(櫓)의 운동(運動)을 6자유도운동계측(自由度運動計測) 장치(裝置)로 측정(測定)하였다. 또한 노(櫓)의 손잡이 부분과 노운동(櫓運動)의 회전중심(回轉中心)이 되는 노봉(櫓棒)위치에 검력계(檢力計)를 설계제작(設計製作)하여 삽입설치(揷入設置)함으로서 노(櫓)가 작동중(作動中)일 때의 검력계(檢力計)의 출력(出力)을 조사(調査)하였다. 계측된 운동과 검력계출력을 해석함으로서 노의 운동(運動)과 추력(推力)사이의 상관관계(相關關係)를 밝히고저 하였다. 얻어진 연구방법론(硏究方法論)을 확장하면 노운동(櫓運動)의 최적조건(最適條件) 구명(究明)에도 활용(活用)될 수 있을 것이며 선측노(船側櫓)를 쓰는 조정(槽艇)에서도 활용될 수 있을 것이다.

  • PDF

20대 여성의 신발종류에 따른 족저압 영역별 비교 연구 (A comparison study for mask plantar pressure measures to the difference of shoes in 20 female)

  • 김용재;지진구;김정태;홍준희;이중숙;이훈식;박승범
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

유산소 운동능력 향상을 위한 중량물 부가 신발의 기능성 평가 (The Evaluation of an additional Weight Shoe's Function developed for the Improvement of Aerobic Capacity)

  • 곽창수;김희석
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.67-82
    • /
    • 2004
  • The purpose of this study was to evaluate the function and the safety of an additional weight shoe developed for the improvement of aerobic capacity, and to improve some problems found by subject's test for an additional weight shoe. The subjects employed for this study were 10 college students. 4 video cameras, AMTI force platform and Pedar insole pressure distribution measurement device were used to analyze foot motions. The results of the study were as follows: 1 The initial achilles tendon angle and initial rearfoot pronation angle of an additional weight shoe during walking were 183.7 deg and 2.33 deg, respectively, and smaller than a barefoot condition. Maximum achilles tendon angle and the angular displacement of achilles tendon angle were 185.35 deg and 4.21 deg respectively, and smaller than barefoot condition. Thus rearfoot stability variables were within the permission value for safety. 2. Maximal anterior posterior ground reaction force of additional weight shoe was appeared to be 1.01-1.2 B.W., and was bigger than a barefoot condition. The time to MAPGRF of an additional weight shoe was longer than a barefoot condition. Maximal vertical ground reaction force of additional weight shoe was appeared to be 2.3-2.7 B.W., and was bigger than a barefoot condition in propulsive force region. But A barefoot condition was bigger in braking force region. The time to MVGRF of an additional weight shoe was longer than a barefoot condition. 3. Regional peak pressure was bigger in medial region than in lateral region in contrast to conventional running shoes. The instant of regional peak pressure was M1-M2-M7-M4-M6-M5 -M3, and differed form conventional running shoes. Regional Impulse was shown to be abnormal patterns. There were no evidences that an additional weight shoe would have function and safety problems through the analysis of rearfoot control and ground reaction force during walking. However, There appeared to have small problem in pressure distribution. It was considered that it would be possible to redesign the inner geometry. This study could not find out safety on human body and exercise effects because of short term research period. Therefore long term study on subject's test would be necessary in the future study.

모형그물에 대한 어군행동의 수직 모델링에 관한 연구 - 어군행동을 나타내는 수치 모델의 파라메터 추정 - (A Study on the Numerical Modeling of the Fish Behabior to the Model Net - Parameter Estimation in Numerical Model of Fish Behavior -)

  • 이병기;이대재;장호영
    • 수산해양기술연구
    • /
    • 제31권4호
    • /
    • pp.307-325
    • /
    • 1995
  • 어군행동의 추정 및 제어등을 위한 기초자료의 제공과 어군행동의 모델링 기법을 현장에 적용하기 위한 가능성을 모색하기 위하여 어군행동을 나타내는 수치모델을 작성하고 유속이 있는 실험수조에서 유영하는 무지개송어를 대상으로 개체 및 어군의 3차원 위치 시계열 데이타를 이용하여 어군행동을 나타내는 수치 모델의 파라메터를 최소자승법으로 추정하였다. 어군행동을 나타내는 수치모델의 개체수 및 유속에 따른 파라메터 값의 변화를 조사하기 위하여 추정한 파라메터 값을 평균이 0이고, 분산이 1되게 파라메터를 표준화하여 비교한 결과를 요약하면 다음과 같다. (1) 개체의 전방추진력의 크기를 나타내는 파라메터 $a^*$는 개체수 및 유속이 증가함에 따라 대체로 작아지는 경향을 나타내었다. (2) 개체 사이의 영향력의 크기를 나타내는 파라메터 ${k_b}^*$는 개체수가 많아짐에 따라 대체로 커지는 경향을 나타내었으나, 유속이 빠를수록 대체로 작아지는 것으로 나타났다. (3) 성군력의 크기를 나타내는 파라메터 ${k_c}^*$는 개체수 및 유속이 증가함에 따라 대체로 커지는 경향을 나타내었다. (4) 수조의 벽이나 바닥 등에 대한 반발력의 크기를 나타내는 파라메터 ${\mid}{k_w}^{+*}{\mid}$는 개체수가 많아짐에 따라 다소 커졌으나, 유속이 빠를수록 작아지는 것으로 나타났다. (5) 수조의 벽이나 바닥등에 대한 유인력의 크기를 나타내는 파라메터 ${\mid}{k_w}^{+*}{\mid}$는 개체수에 관계없이 대체로 일정한 것으로 나타났으나, 유속이 빠를수록 대체로 커지는 경향을 나타내었다. (6) 저항력의 크기를 나타내는 파라메터 $v^{*}$는 개체수가 많아짐에 따라 다소 커지는 경향을 나타내었으나, 유속이 빠를수록 작아지는 것으로 나타났다.

  • PDF

CFD를 이용한 유동제어 핀의 최적설계 (The Design Optimization of a Flow Control Fin Using CFD)

  • 위다얼;김동준
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.174-181
    • /
    • 2012
  • In this paper, the Flow Control Fin(FCF) optimization has been carried out using computational fluid dynamics(CFD) techniques. This study focused on evaluation for the performance of the FCF attached in the stern part of the ship. The main advantage of FCF is to enhance the resistance performance through the lift generation with a forward force component on the foil section, and the propulsive performance by the uniformity of velocity distribution on the propeller plane. This study intended to evaluate these functions and to find optimized FCF form for minimizing viscous resistance and equalizing wake distribution. Four parameters of FCF are used in the study, which were angle and position of FCF, longitudinal location, transverse location, and span length in the optimization process. KRISO 300K VLCC2(KVLCC2) was chosen for an example ship to demonstrate FCF for optimization. The optimization procedure utilized genetic algorithms (GAs), a gradient-based optimizer for the refinement of the solution, and Non-dominated Sorting GA-II(NSGA-II) for Multiobjective Optimization. The results showed that the optimized FCF could enhance the uniformity of wake distribution at the expense of viscous resistance.

헛디딤 보행특성 분석 (Gait Analysis on Unexpected Missing Foot Steps)

  • 황선홍;류기홍;금영광;김영호
    • 한국정밀공학회지
    • /
    • 제24권1호
    • /
    • pp.85-92
    • /
    • 2007
  • In the present study, three-dimensional motion analyses were performed to determine biomechanics of the lower extremity in unexpected missing foot steps for ten healthy young volunteers. In unexpected missing foot steps, the whole plantar surface of the foot or the heel contacted to the ground. A rapid ankle dorsiflexion was found right after missing foot steps and an increased plantarflexion moment was noted during loading response. After the unexpected situation, the breaking force increased rapidly. At this time, both tibialis anterior and soleus were simultaneously activated. Moreover, the range of motion at ankle, knee and hip significantly decreased during stance. In pre-swing, rectus femoris and biceps femoris prevented the collapse of the lower limbs. During late stance, propulsive forces decreased and thus, both plantarflexion moment and power generation were significantly reduced. On the opposite side, hip extension and pelvic upward motion during terminal swing were significant. Due to the shortened pre-swing, the energy generation at the ankle to push sufficiently off the ground was greatly reduced. This preliminary study would be helpful to understand the biomechanics of unexpected dynamic perturbations and valuable to prevent frequent falling of the elderly and patients with gait disorders.

PID 제어기를 이용한 호버링 AUV의 구현과 자세 제어 (Implementation of Hovering AUV and Its Attitude Control Using PID Controller)

  • 김민지;백운경;하경남;주문갑
    • 한국해양공학회지
    • /
    • 제30권3호
    • /
    • pp.221-226
    • /
    • 2016
  • An attitude controller for a 6-DOF hovering autonomous underwater vehicle (HAUV) is implemented. We add a vertical thruster, an underwater camera, a wireless communication device, and a DVL to the HAUV that was developed a year ago. The HAUV is composed of 5 thrusters, 2 servo-motors, and 4 apparatus parts. Two rotating thrusters control the surge, heave, and roll of the vehicle. The vertical thruster controls the pitch, and two horizontal thrusters control the sway and yaw of the vehicle. The HAUV’s movement in each direction is controlled by 6 PID controllers. Each PID controller controls the propulsive force and angle of a thruster. In a horizontal and vertical movement experiment, we showed the feasibility of the proposed controller by maintaining a given depth and heading angle of the HAUV.