• 제목/요약/키워드: PRODAS

검색결과 11건 처리시간 0.029초

선박용 프로펠러의 종방향 강체운동에 대한 부가질량 (The Added Mass and Damping for the Axial Rigid Body Motion of a Marine Propeller Rotating in a Uniform Flow)

  • 김영중;이현엽;이창섭
    • 대한조선학회논문집
    • /
    • 제45권3호
    • /
    • pp.309-314
    • /
    • 2008
  • An experimental method to estimate the added mass of a marine propeller has been developed for the axial rigid body motion in still water, and the experiments have been carried out. The experimental result has been compared to the theoretical result by PRODAS based on the unsteady lifting surface theory. The experimental method developed in this research and the theoretical method by PRODAS have been validated by confirming good agreements between the experimental results and the theoretical ones. Also the comparison to the results by empirical formula has been made and discussed.

2D 탄도수정탄의 형상설계 연구 (A Study on Configuration Design of the 2D Course Correction Munition)

  • 김기표;정명지;홍종태
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.5-12
    • /
    • 2008
  • There are some ways to improve precision of conventional munitions by low-cost method. 2D Course Correction Munition(CCM) is one of those ways, which is a 155mm projectile integrated with 2D Guidance Fuze(GF) instead of conventional fuze. 2D GF can correct the projectile trajectory and minimize range and deflection errors from its aimpoint using canard control. In this paper 2D CCM system concept is introduced and its course correction capability is analyzed using PRODAS.

활공형 탄약의 비행모사 시뮬레이터를 활용한 조건별 최대사거리 연구 (A Study on the Maximum Target Distance Using a Flight Simulator of Glide-Type Ammunition)

  • 신승제;김환우
    • 한국멀티미디어학회논문지
    • /
    • 제21권6호
    • /
    • pp.698-704
    • /
    • 2018
  • When the new ammunition is designed, it is necessary to confirm in advance how long the target distance is depends on the shape and weight of the designed ammunition. Therefore we can use commercial software such as PRODAS to predict the target distance in the design stage. This commercial software has aerodynamic data for various ammunition shape and calculates the target range by calculating the kinetic equations of the ammunition using the aerodynamic data most similar to the designed ammunition. The ammunition for predicting the target distance through software such as PRODAS is a non-guided ammunition that has no control after launch but the glide type ammunition is guided and control ammunition. So it is predicts the state of ammunition after the launch. A new type of simulator is needed to analyze the maximum range and to verify the onboard guided and control algorithm. The simulator constructed in this paper is an optimized simulator for glide type ammunition. Unlike unmanned aircraft and guided missiles. The rotation characteristics of the ammunition are considered and the navigation initialization algorithm is applied. The constructed simulator confirmed the performance by performing maximum range analysis of glide type ammunition.

조종날개가 장착된 탄도수정탄의 자이로안정성 및 항력 특성 연구 (Gyroscopic Stability and Drag Characteristics Study of Canard-Installed Course Correction Munition)

  • 배주현
    • 한국군사과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.376-383
    • /
    • 2017
  • This paper describes the gyroscopic stability and the drag characteristics of the smart munition with a course correction fuze(CCF). A ballistic analysis was conducted to figure out the effect of the canards on the gyroscopic stability of the projectile. The analysis used the commercial ammunition performance evaluation software: Projectile Design and Analysis System(PRODAS). In particular, we compared the PRODAS analysis results to real field test results to investigate the influence of the CCF mounted projectile. In addition, some ballistic simulations were carried out to provide the conditions suitable for wind tunnel tests. Experimental results show that the added drag force by the canards is almost uniform regardless of the Mach number when the projectile is at the normal position where the angle of rotation and the angle of attack are both 0 degrees. However, as the angle of attack of the projectile increases, the additional drag force depends on the deflection of the canards.

PDOP 가중치 기반 정밀 탄궤적 정합 알고리즘 (A Precise Projectile Trajectory Registration Algorithm Based on Weighted PDOP)

  • 신석현;김종주
    • 한국항공우주학회지
    • /
    • 제44권6호
    • /
    • pp.502-511
    • /
    • 2016
  • 최근 다양한 형태와 기능을 갖춘 스마트 무기들이 개발되고 있다. 화포탄의 경우 스마트 탄을 개발하기 위한 초기 연구로 신관 내부에 GNSS 수신기를 장착하여 탄자의 비행위치를 정밀하게 측정하고 이를 바탕으로 탄착점을 추정하는 연구가 진행되고 있다. 하지만, 수신기 성능 및 수신된 데이터에 포함된 다양한 오차유발 원인들로 인해 항법데이터의 위치정확도에 오차가 발생하게 된다. 본 논문에서는 PRODAS로부터 얻은 모의궤적 데이터를 수신기로부터 얻은 항법데이터에 포함된 PDOP 가중치를 적용하여 정합함으로써 탄의 발사부터 탄착까지의 전체 비행궤적 및 탄착점을 보다 정밀하게 추정하는 개선된 알고리즘을 소개한다.

Matlab Simulink를 이용한 회전안정탄의 6 자유도 탄도 모델링 (6 - DOF Trajectory M&S of Spin - stabilized Munitions using Matlab Simulink)

  • 김기표;윤상용;김진석;홍종태
    • 시스템엔지니어링학술지
    • /
    • 제2권2호
    • /
    • pp.39-44
    • /
    • 2006
  • With the advent of low cost, miniature and high-g hardened inertial sensors and actuators, many kind of smart munitions are becoming practical such as 1D or 2D TCM, SFM, Range Extended GPS guided munitions and so on. They have more complicated trajectory control algorithm than conventional munitions'. Therefore it is necessary to study the complicated operation algorithm of smart munitions with M&S in advance of developing them. The purpose of this paper is to introduce a practical M&S method to study an operation concept of smart munitions using PRODAS and Matlab.

  • PDF

대공방어무기의 자기생존성 확보를 위한 공격능력분석 (Attack Capability Analysis for Securing Self-Survival of Air Defense Weapons)

  • 김세일;신진
    • 한국시뮬레이션학회논문지
    • /
    • 제30권3호
    • /
    • pp.11-17
    • /
    • 2021
  • 30mm 대공포는 비호, 비호복합, 차륜형대공포로 다양한 형태의 무기체계로 개발되어 방공 기능의 주요 대공무기로 그 역할을 수행하고 있다. 대공무기는 비행체의 공격으로부터 영공을 방어하는 임무를 수행한다. 특히 공격작전 시 대공무기는 기계화부대와 혼합 편성된다. 그리고 대공무기는 전쟁터의 최전방에서 이동하기 때문에 적에게 공격 받기 쉽다. 적군은 자기의 생존성 보장율을 높이기 위하여 최대한 엄폐나 은폐하면서 아군을 공격할 것으로 예상된다. 따라서 본 연구는 아군의 30mm 대공탄이 엄폐하고 있는 적군을 제압할 수 있는지를 분석하였다. 이 연구는 M&S 기법을 사용하여 30mm 대공탄의 성능을 분석하였다. 본 연구는 실험을 위하여, 실사격과 M&S에 의한 모의 방법을 이용하였다. 본 연구는 실사격 실험을 위하여 강판과 합판을 사용하였다. 또한 M&S를 통한 모의실험 과정에서 본 연구가 30mm 대공무기의 탄도와 관통·파편능력을 분석하기 위하여 PRODAS모델, AUTODYN모델, Split-x모델을 활용하였다. 실험결과에 의하면 30mm 대공탄으로 적의 장갑차량을 파괴할 수 있는 것이 증명되었다. 30mm 대공무기는 일반건물이나 숲속에 은폐한 적을 신속하게 제압하는데 성공하였다. 이로써 사전에 아군의 피해를 최소화할 수 있다.

5.56밀리 소화기탄 탄자 코어 재질 변경에 따른 동심탄의 탄도호환성 분석 (Ballistic Match Analysis for 5.56 MM Bullet with New Copper Core Material)

  • 고용신;박용덕
    • 한국군사과학기술학회지
    • /
    • 제19권6호
    • /
    • pp.712-720
    • /
    • 2016
  • The purpose of this study was to inspect ballistic match of copper bullet at 4 points by analyzing vertical deviation about shot group of the 5.56 mm common bullets and copper bullets. The 5.56 mm bullet with new copper core material was developed for mitigation of environmental pollution and harmfulness to human body. The results of this study are as follows; using the regression analysis, estimated reference value of ballistic match were 51.6 mm, 64.9 mm, 87.3 mm and 99.6 mm at 25 m, 100 m, 200 m and 250 m range respectively. When analyzing the shooting test data, alternative hypothesis(The vertical deviations are less than the reference value) was adopted as the result of analyzing data using t-test. And the values of data through tool(PRODAS) and standard trajectory equation meet requirements of estimated ballistic match respectively. In conclusion, the level of ballistic match of 5.56 mm copper bullets meets the estimated reference level through regression analysis at 4 points.

친환경 소화기용 탄심 재료 및 2중 구조 설계 분석 (Design and Performance Analysis of Environment Friendly Double Core Bullets for Small Arms)

  • 홍준희;장탁순;송창빈;김병인
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.264-270
    • /
    • 2011
  • This paper focuses on possibility to design and fabrication new combination of bullet core to substitute current toxic material of heavy metal such as lead by environment-friendly ones. The core is designed as dual structure to manipulate the core center of gravity easily by combining materials, which of basis is tungsten of low cost and easily acquired. Those combinations are W-M series such as W-Cu, W-Sn, W-Cu-Sn, and W-Cu-Ni to target the density of lead, $11.34g/cm^3$ through powder-metallurgy. Out of four, combination of W-Cu-Ni shows the highest compression density of 96% and is confirmed as the most suitable substitution for lead due to the excellent property of matter and sintering. All combination samples is simulated on the PRODAS software for designing and structure analysis by adjusting the center of gravity of dual core samples forward and backward. The simulations confirm the similarity of current bullet core with respect to properties of mass, aero dynamics, and flying stability.

탄저압력계수를 이용한 5.56mm 소총의 압력-이동거리 곡선 산출 (A Study on the Pressure-travel Curve of 5.56mm Rifle Obtained from the Empirical Base Pressure Factor)

  • 이상길;이강영
    • 한국군사과학기술학회지
    • /
    • 제10권3호
    • /
    • pp.208-216
    • /
    • 2007
  • As the propellant mass is being accelerated out of the gun chamber along with the projectile, a continuous pressure gradient exists between the end of chamber and the base of the projectile. For this reason, the base pressure-travel curve is very important to design a conventional gun barrel in the interior ballistics, but it is not obtained briefly by empirical or theoretical method. In this paper, a simple relation between chamber pressure and base pressure was determined by the factor of base pressure(Cb) obtained from the experimental method. The simple relation gives a reasonable prediction for the reduction of pressure between the breech and the base of projectile owing to the axial gradient in the gun tube. The predictions have been validated by the infrared screen sensor and the PRODAS(PROjectile Design and Analysis System) for interior ballistic systems. Therefore, the base pressure-travel curve could be calculated from the chamber pressure measured by piezoelectric sensor. The base pressure-travel curve obtained from the simple relation offers initial information to gun barrel designer and is used for calculation of muzzle velocity.