Journal of the Korean Data and Information Science Society
/
v.14
no.3
/
pp.545-551
/
2003
Robust design is to identify appropriate settings of control factors that make the system's performance robust to changes in the noise factors that represent the source of variation. In this paper we propose how to simultaneously optimize multiple quality characteristics using the principal component analysis of multivariate statistical analysis. An example is illustrated to compare it with already proposed method.
Journal of the Korean Data and Information Science Society
/
v.15
no.3
/
pp.531-542
/
2004
Principal component analysis and cluster analysis were conducted to comprehensively evaluate the water quality of Busan coastal area with the data collected seasonally by the analysis of surface water at 10 stations from 1997 to 2003. We noted that the first principal component was regarded as a factor related with the input of nutrient-rich fresh water and the second principal component as meteorological characteristics. Also we obtained that water qualities of station 4 and 9 were different from those of other stations in Busan coastal area.
Journal of Korea Technical Association of The Pulp and Paper Industry
/
v.48
no.1
/
pp.34-42
/
2016
In this study, we classified three copying papers and Korean, Chinese, and Japanese traditional papers using IR and/or NIR spectra and principal component analysis. Various chemicals are used when producing fine papers. In this case, the IR method to analyze functional groups is suitable for the classification of paper. On the other hand, NIR analysis is more suitable for the classification of traditional papers, as it uses nearly raw materials (pulp). Therefore, principal component analysis using IR and NIR depending on the paper production process will be the classification tool of paper.
In this study, we proposed a new promising idea of utilizing moving window principal component analysis (MWPCA) as a sensitive diagnostic tool to detect the presence of peak position shift. In this approach, the moving window is constructed from a small data segment along the wavenumber axis. For each window bound by a narrow wavenumber region, separate PCA analysis was applied. Simulated spectra with complex spectral feature variations were analyzed to explore the possibility of MWPCA technique. This MWPCA-based detection of the peak shift, potentially coupled with 2D correlation analysis to provide additional verification, may offer an attractive solution.
Journal of the Korean Data and Information Science Society
/
v.16
no.4
/
pp.717-724
/
2005
We often extract a new feature from the original features for the purpose of reducing the dimensions of feature space and better classification. In this paper, we show feature extraction method based on independent component analysis can be used for classification. Entropy and mutual information are used for the selection of ordered features. Performance of classification based on independent component analysis is compared with principal component analysis for three real data sets.
To understand the shape of the neck in a view of garment planning, principal component analysis has been appliedto the measurement of the neck. The neck surface development and the cross sections of the neck have been observed. The materials consist of the body mearsurements, the neck surface developments and the cross sec- tions of the necks of a total of 108 korean woman students. The difference between the right side and the left side of the neck has not been reconginiged. But the differenece among the height of the front neck point, that of the side neck point and that of the back neck point has been recognized. 2. The initial 41 items have been found having variety and duplication. So two criteria have been made to solve those problems and the selection of 34 items have been made by each criterion. 3. 43 and 34 items have been compared by means of accumulative ratios of contribution and of clearness within the meaning of principal component. As a result, 34 measurement items have been further anylysis. 4. As a result of principal component analysis on the 34 items, the four principal components have been found obtaines and inter-preted. The four principal components are 1) the thick of the neck, 2) the front neck-line on the waist basic pattern, basic pattern, 3) the shape of the neck surface development, and 4) the back neck-line on the waist basic pattern. 5. According to the graphic informations concerning these principal components, the meaning of these four principal components has been grasped on the visual. As a result, there is a large individual difference in the shape of neck.
Kim, Sea-Hyun;Ahn, Young-sang;Jung, Hyun-Kwon;Jang, Yong-Seok;Park, Hyung-Soon
Plant Resources
/
v.5
no.3
/
pp.214-223
/
2002
The objective of this study was to understand the conservation of gene resources and provide information for mass selection' of winter bud characters among the selected populations of Kalopanax septemlobus Koidz using analysis of variance(ANOVA) tests. The obtained results are shown below; 1. Ten populations of K. septemlobus were selected for the study of the variation of winter bud characters in Korea. The results of the analysis of variance(ANOVA) tests shows that there were statistically significant differences in all of the winter bud characters among those populations. 2. Correlation analysis shows that width between Height and DBH(Diameter at breast height) characters have negative relationship with all of the characters, as ABL(Apical branch length), ABW(Apical branch width), AWBL(Apical branch winter bud length), AWBW(Apical branch winter bud width), ABT(Apical branch No. of thorns), ABLB(Apical branch No. of lateral bud) and LBL(Lateral branch length), LBW(Lateral branch width), LBT(Lateral branch No. of thorns), LBLB(Lateral branch No. of lateral bud). 3. The result of principal component analysis(PCA) for winter buds showed that the first principal components(PC' s) to the fourth principal component explains about 78% of the total variation. The first principal component(PC) was correlated with AWBW, LWBW, and LBL and the ratio of ABL/ABW and LBL/LBW out of 16 winter bud characters. The second principal component correlated with ABL, ABW, ABLB, LWBL(Lateral branch winter bud length), and LBW and the ratio of AWBL/AWBW. The third principal component correlated with ABL, ABW, LWBL, LBL, and the ratio of LBL/LBW. The fourth principal component correlated with LBL and the ratio of LWBL/LWBW(Lateral branch winter bud width), LBL/LBW. Therefore, these characters were important to analysis of the variation for winter bud characters among selected populations of K. septemlobus in Korea. 4. Cluster analysis using the average linkage method based on 10 selected populations for the 16 winter bud characters of K. septemlobus in Korea showed a clustering into two groups by level of distance 1.1(Fig. 3). As can be seen in Fig. 3, Group I consisted of three areas(Mt. Sori, Mt. Balwang and Mt. Worak) and Group Ⅱ contisted of seven areas(Suwon, Mt. Chuwang, Mt. Kyeryong, Mt. Kaji, Mt. Jiri, Muan, and Mt. Halla). The result of cluster analysis for winter bud characters corresponded well with principal component analysis, as is shown in Fig. 2.
The relationships and character variations on 5 taxa of Calystegia were examined by sluster analysis and principal component analysis. Thirteen Calystegia population samples from the middle part of Korea were observed. Although minor differences were noted, essentially similar results were obtained from the phenograms by UPGMA, UPGMC and Ward's clustering methods, and these results were in accordance with those obtained from the ordination plots by principal component analysis. C. soldanella is distantly connected with the other taxa mainly because of its morphologically different leaf organs. Based on the difference on the first principal component, C. hederacae is kept apart from the rest 3 taxa. In the relationships among C. japonica, C. sepium var. americana and C. davurica, mivor differences were obtained from the 3 clustering methods. As to the character variations among different populations within a taxon, they are slight in C. soldanella and C. sepium var. americana, but remarkable in C. hederacae and C. davurica.
In this paper, we discuss and review various measures which have been presented for studying outliers. high-leverage points, and influential observations when principal component regression is adopted. We suggest several diagnostics measures when principal component regression is used. A numerical example is illustrated. Some individual data points may be flagged as outliers, high-leverage point, or influential points.
In this paper, we propose a new approach to speaker identification technique which uses an ensemble of multiple classifiers (speaker identifiers). KPCA (kernel principal component analysis) enhances features for each classifier. To reduce the processing time and memory requirements, we select limited number of samples randomly which are used as estimation set for each KPCA basis. The experimental result shows that the proposed approach gives a higher identification accuracy than GKPCA (greedy kernel principal component analysis).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.