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Soon-Kwi Kim® and Sung H. Park™”

ABSTRACT

In this paper, we discuss and review various measures which have been presented for
studying outliers. high-leverage points, and influential observations when principal component
regression is adopted. We suggest several diagnostics measures when principal component
regression is used.

A numerical example is illustrated. Some individual data points may be flagged as outliers,

high-leverage point. or influential points.

1. Introduction

Consider the ordinary linear regression model

y=XB+te, (1.1

where
y is an nX1 observation vector of dependent variable 3

X is an nXp (n>p) full rank matrix of independent variables ;

B is a pX1 vector of unknown coefficients ; and

& is an nX1 vector of error terms.
In addition, we assume that the independent variables are linearly transformed so that XX is
the correlation matrix of the independent variables.

The values of principal components(PCs) for each observation are given by

72=XP

where the (i,k)th element of Z is the value of the kth PC for the ith observation, and P is
a pXp matrix whose kth column is the kth eigenvector of XX.

Because P is orthogonal, XB can be rewritten as XPPB=Za, where a=PB. Equatin (1.1)
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can therefore be written as

y=Zate. (1.2)

Principal component regression(PCR) usés the model(1.2) or the reduced model

y:Zggg+£3 (1- 3)

where g, is a gX1 vector which is a subset of elements of a, Z, is an nXg matrix whose columns
are the corresponding subset of columns of Z=XP, and g, is the appropriate error term. Then
the resulting estimators

a=W"'pXy, ATpXy, s AT Xy (1.4a)

B=Pa= £ 1 by (1.4
Pe™ Tele™ & A DDIXY
where it is assumed that A 24> -+ 2A,>0 and Age1s Agez» s A, are small eigenvalues of XX.
By defining P=[P, : P.] where P, is pXg, P, is pXs, and A=[ lgg 2 ] in which A, is
the gXg diagonal and A, is the sXs diagonal matrix, respectively, (1.4a) and (1.4b) can be
written as,
&=A,; ' P.Xy. (1.5a)
B=P.A;'PXy (1.5b)

2. Leverage and Residuals in Principal Component Regression
Using the estimator (1.5a), the vector of fitted values is
V' =26,=Z(Z, 79" Z,y=XPA;'P,Xy 2.1

Therefore, the matrix H*=Z(Z,Z,) "'Z, plays the same role as the hat matrix H in the least
squares method(LSM). The ith fitted value can be written as

}A’i‘ = Z_ hij*Yj
)>=1

where h;* is i—jth element of H* for i,j=1, 2, -, n, and consequently, 9y:"/9yi=h:*. The
PC hat diagonals hi" can be interpreted as leverage in the same sense as the hat diagonal in
LSM.

The singular value decomposition(SVD) (Mandel, 1982 and Jolliffe, 1986, p.37) allows X
to be decomposed as X=UAYP,
where

(1) U,P are nXp, pXp matrices respectively, each of which has orthonormal columns so
that UU=PP=L;
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(2) A¥* is a pXp diagonal matrix ;
(3) p is the rank of X.
Using the SVD, the PC leverage of the ith point can be written as

g
hi* = ZIUijz
i=

I .
since H*=U[—g*§JU where [, ia an identity matrix of dimension g, O,-, is a zero matrix
g

of dimension p—g and u; is i-jth element of U for i=1, 2, **, n and j=1, 2, -, g.

Several important facts can be deduced from the preceding expression. First, h:* <hifori=1,2,
3, -, ns that is, for every observation the PC leverage is smaller than the corresponding least
squares(LS) leverage. Second, from the fact that H=UU’, the leverage increases montonically
as g increases since h; can be written as

o .2
hi= X ud.
=1

The preceding discussion suggests that the influence can be affected as g increases. Remember,
however, that influence is not only a function of leverage but also of the residual. Althouth
the leverage of every point monotonically decreases as p decreases, the effect of this increment
on the residual is far less clear.

The ith PC residual is defined as

ei.:yf—gli*:yf—zg-i’ d__ag, (2.2a)
which, using the SVD, can be written as

e"=e+ (i’i— g’i‘)
= ei+ _ﬁ Yj [ i Uim ujm] (2- 2b)
=1 m=g+1

where z,.; is the ith row vector of Z,

The form of (2.2b) makes it hard to tell the behavior of e;*. Notice, however, that the second
term on the right hand side of (2.2b) can be either positive or negative ; thus the PC residual
for any given case can be either larger or smaller than the corresponding LSM residual.

3. Measures Based on the Influence Curve

In this section, we will focus our attention on the detection of a single influential observation.
Several measures have been proposed for this purpose, however, they suffer from the problem
of masking. That is, there exist some cases that can disguise or mask the prtential influence
of other cases.

In case the influence function(IF) is a vector. it must be normalized so that observatins can
be orderd in a meaningful way. Thus one may use
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Di(M, o= (IF) ’M(IF.)

c 3.1

to assess the influence of the ith observation on the regression coefficients relative to M and
¢ (see Chatterjee and Hadi, 1988). When PCR is used, we want to examine two diagnostic
measures which are Welsh-Kuh distance and Cook’s distance.

Welsh-Kuh’s Distance

In the ordinary linear regression model, the influence of the ith observation on the predicted
value ¥ can be measured by the change in the prediction at x; when the ith observation is omitted,
relative to the standard error of i, that is

Vi— o &'(é—ﬁ(o)
hii hii

3.2)

where i is the ith row of Hy, _[3_(0 is the estimate of B when the ith observation is omitted
and 7. =x/Bw. Belsley et al. (1980) and others suggested using 6w as an estimate of ¢ in
(3.2). Then, a version of Welsh-Kuh’s distance can be suggested as

_Eil(g;_ﬁ_g(i))

WKi* T i (3‘ 3)
s* oV hi

where s*@ is the square root of the residual mean square without the ith case when PCR is
used. Note that we have replaced (s*)?, the residual mean square, by (s*w)?%
When the ith observation is omitted, the reduced model in (1.3) can be written as

Yo=XoP a0+ g0 (3.4a)
=XwBew ten (3.4b)
where P;* is the pXg martix whose columns consist of g normalized eigenctors p:*, p.", °**,

p,’, which correspond to g largest eigenvalues A", Ae"» s A" of XoXa, respectively.
Large values of WK* indicate that the ith observation is influential on the fit of (3.4b).

Cook’s Distance
Cook(1977) suggested the meausre

oo BB XXG-BY

— , i=1, 2, =+, n (3.5)
[o]

to asses the influence of the ith observation on the center of the confidence ellipsoid or, equivalen-
tly, on the estimated coefficients. This measure is called Cook’s distance and it can be thought
of as the scaled distance between f’) and Bo.

At least two versions of C; can be constructed for PCR analysis, namely,

Cr= (-B_g-gg(i)),(PgAg_l P, )" (@;"‘@(o)
(A gs

(3.6)

2
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and

(é_g—(igm)}}g(ég—d_gm) 3.7

Cr= gs

where the superscriptA“—” denotes the Moore-Penrose inverse matrix. C* and C** are based
on the fact that Var(B) =P,A;'P,o* and Var(&) =A,'c’, respectively. Note that C’* in (3.
7) is not the measure on B, but the measure on G

WK:* gives a measure of the influence of the ith observation on the prediction at x.. Similarly,
the influence of the ith observation on the prediction at x., ri, is given by

| Xr’(ég_ Bg(i)) l
o/ .X:PgAng Pg’_'l{_r

However, if v is a kX1 vector, then we note that

T D
Fs_up—ﬂ\/_'PT—l—sz— ——\/(Eg Eé‘“’) (PA;'P) (E-g P_?(‘))

and hence

|Xr'(A—Agi)| 2.
x B B <V g5Cr/(s*w)? for all r.

S‘ O] hn'*

Thus, if C* does not declare the ith observation to be influential on the prediction at x;, then
the ith observation does not seem to be influential on the prediction at any other point X.. rsi,
when WK* is used as a diagnostic measure. The usual F-distribution can also the used as a
rough yardstick for these measures.

4. Measures Based on the Volume of Confidence Ellipsoids

A measure of the influence of the ith observation on the estimated regression coefficients
can be based on the change in volume of confidence ellipsoids with and without the ith observation.
In this section, we suggest two of these measures, namely,

(1) Andrews-Predgibon statistic, and

(2) Cook-Weisberg statistic.

Andrews-Pregibon Statistic

Using the distribution theory of quadratic forms, we can obtain the following theorem.

Theorem 4.1

Assume that Z, in the model (1.3) is of rank g and e~N(0, Ic?). Then, the quantity below

is distributed as noncentral F distribution, with g and n-g degrees of freedom(d.f.) and noncent-
rality parameters 0, v—_—_B_'PsAsPs'E/ o’. That is,
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(B—PP,B)XX(B,~PP,B)/g
yI-H"y/(n—g)

Flg,n—g; v=EPA£sE/&)- (4.1

where SSE*=y(I-H"y.
Proof From (1.5b), it follows that

X(B~B)~N(=XPP,B, H'o).
Therefore,
Q= (B,—P.P;B) XX(B.—P.P,B)/o*~x*(2)
where g denotes the d.f. The proof is completed from the fact that
yI-H"y/c*~x(n—g, »=pPAP.B/Y,
where v denotes the noncentrality parameter, and
Qo and y'(I-H")y are independent. B
Let Aqo=diag(A*, A", -, A*) and SSE*( denote the residual sum of squares in the model

(3.4a). Then two versions of the Andrews-Pregibon statistic in PCR based on (3.7) and (3.6)
respectively, can be defined as,

. SSE*w | Ao |
APi =1- SSE* | 1\g I (4-28)
and o SSE*(i) ‘ X(i)X(i) l

where the bar denotes determinant. Note that AP is the measure detecting the sensitivity
on @;. The following theorem shows a property of AP,

Theorem 4.2

Let W=(XP, : y) be an augmented nX(g+1) martix. Then, AP:" in (4.2a) can be written
as

. | WoWo |
AP =1-"Tww | (4.3

Proof Lew Wo=(XoP," : yo) be the augmented (n—1) X(g+1) matrix. Then, since
A B
IC pl =14l ID—CA™BI,

we have
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| WWI=|PXXP| |yI-HYyl
= | Ag | SSE*.

Similarly,

[ WoWo | = | (P,") XoXoP," | l_}im’(I—H'm)X(u [
= | Aw | SSE*»
where H*0=2Z"0 [(Z,*») Z:* 0] '(Z:*»)", which completes the proof. l
Note that the second term in the right hand side in (4.2b) represents the proportion of the

volume generated by W that is not due to the ith observation. Hence, large values of (4.2a)
and (4.2b) call for special attention.

Cook-Weisbherg Statistic

Under normality, the 100(1—a) % joint confidence ellipsoid for P;P;B can be obtained from
(4.1). That is

.. (B;—P.P,B)XX(B,—P,P,B)
E={pp,p: 2 Tt E BRRD
= g(s*)?

Cook and Weisberg(1980) propose the logarithm of the ratio of the volume of the 100(1—a) %
confidence ellipsoids with and without the ith observation as a measure of influence. Since the

volume of an ellipsoid is proportional to the inverse of the square root of the determinant of
the associated matrix of the quadratic forms, the Cock-Weisberg statistic in PCR can be defined

as
. XoXo| v [ s* 1° Fla:g, n—g:0,v) J o2
CW:" =log {l XX | s'<a>J Fla:g, n—g—1:0,2) (4.4)

Fla:g n—g:0, v)
Fla:g, n—g—1:0, )

<F(a:g n—g:0, v}

=1/2log(1—hs) +p/2log ['(%s:(%)T +p/2log [
=1/210g(1— hii) + p/ZIog %::(77 jl ’

where »:=BP,*A,*P,* B/c? P.* is the px(p—g) matrix whose columns consist of p—g normalized
eigenvectors and A." is the (p—g)x(p—g) diagonal matrix, which correspond to p—g smallest
eigenvalues of XwXw, respectively. If this quantity is large and positive, then deleting the ith
case will result in a substantial decrease in volume, and if it is large and negative, deleting
the ith case will result in a substantial increase in volume.

5. A Numerical Example

The data set which is used for a numerical example is related to the performance of a computeri-
zed system for processing military personnel action forms. There are 15 observations on six
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regressors and one dependent variable(see Table 1). First, we apply principal component analysis
(PCA) based on the correlation matrix to the predictors. The correlation matrix and the results
of PCA are shown in Table 2 and 3, respectively. Then we select the first four PCs, because
the remaining eigenvalues are very small (A= 0.4266>>A;=0.0629) and the coefficient of deter-
mination R? is not small compared to the model with all PCs.

Table 4 shows &°, ra, r.°, hi" and hw
where

raa:e;'/(s*v 1_—hii*‘)9
ra' =ei‘/(5*(i)\/ 1—hi*),

and h.: is the i-th diagonal element of the hat matrix of W= (XP, : Y). The scatter plot of r.
versus yi*(Fig. 1) and the normal probability plot(Fig. 2) do not show any gross violation of
the usual assumptions. Observations #8 and # 15, however, have moderate large residuals.
Only one case (#1) has hi*>2(4)/15=.533, and hence it can be declared to be a high-leverage
point.

Fig. 3 shows the boxplot for r., h:* and h.i:. The boxplots for hi* and h.:* show that observations
#1, #2, and #8 are separated from the bulk of other observations. Typically hw picks out
observations with large h;*(e.g., observation #1) and | &" | (e.g., observation #8) as being
different from other observations. In this example, however, h;* does not pick out observation
#8 ; the reason being that observation # 8 lies near the center of the predictor variables and
hence has somewhat small hi* value(hs*=.4).

The L-R plot, defined as the scatter plot of leverage value h;* versus a*=(e*)?/SSE*, for
the Hill’s data is shown in Fig. 4. Two observations are separated from the bulk of other points.
We find the high-leverage point(#1) in the upper-left corner and the outlier (#8 or #15)
in the lower-right corner.

Next, we examine the influence measures based on the IF. Thses are also shown in Table
5. The corresponding boxplots (Fig. 5) show that observation #8 is the most influential on
f} . Examination of residuals have not pointed out any peculiarities regarding observation #8.
This observation, however, has the second largest standardized residual(r.=1.81).

The influential measures based on the volume of confidence ellipsoids are shown in Table
6 and the corresponding boxplots are displayed in Figure 5. According to these measures, observa-
tion #2 is the most influential on the volume of confidence ellipsoids. This is, because the
points that are remote in the space are the ones that affect the volume of the confidence ellipsoids
the most,

With regard to’ examination of the data for the presence of outliers, high-leverage points,
or influential observations, each of which has different characteristics. The L-R plot (Fig. 4)
explains the difference among these three observations. Observation #15 is an example of an
outlier that is neither a high-leverage point nor influential. #1 is an example of a high-leverage
point that is neither an outlier nor influential. Measures based on the IF have pointed #8 as
the most influential on ﬁg and 6. According to the influential measures based on the volume
of confidence ellipsoids #2 is an example of an influential observation that is not an outlier.
Note that examination of residuals alone is not sufficient for the detection of influential observa-
tions, and C** in (3.14) and AP** in (4.2b) are not the influential measures of postulated
models, but of reduced models in (1.3).
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Case X, X, X X, X5 X5 y
1 57.0 6.40 12 293.2 41.1 45.0 61.2
2 53.0 5.00 12 354.3 51.0 29.4 62.3
3 50.3 5.75 14 293.5 24.9 29.4 59.4
4 41.2 4.50 13 299.0 19.4 20.3 66.2
5 36.7 5.15 13 286.0 18.6 17.4 66.0
6 35.5 4.25 10 254.8 17.1 14.9 71.4
7 26.4 3.35 10 270.4 17.6 15.5 75.4
8 25.0 2.50 9 239.2 13.6 13.2 83.2
9 23.5 3.45 11 270.5 14.3 11.7 73.2
10 26.7 6.00 11 298.0 12.9 10.4 71.1
11 25.8 5.70 11 247.0 11.9 15.2 72.8
12 25.7 6.75 12 260.1 12.5 19.5 75.6
13 27.0 4.95 12 228.8 10.5 18.6 76.0
14 24.5 3.65 12 179.4 8.3 19.1 70.2
15 23.1 4.05 11 176.8 8.5 15.9 68.6
Table 2. Correlation Matrix
X, X, X, X, X5 X6
X, 1. 000000 . 424576 .538386 . 688039 . 889261 . 871502
X . 424576 1. 000000 .561795 . 388890 . 295933 .479412
X5 .538386 .561795 1. 000000 .303690 .281019 .503626
X, . 688039 . 388890 .303690 1. 000000 . 755960 . 396400
Xs .889261 .295933 .281019 . 755960 1. 000000 . 795574
Xs . 871502 .479412 . 503626 . 396400 . 795574 1. 000000
Table 3. The Results of PCA Based on Correlation Matrix
Zl ZZ ZS ZA ZS ZG
X, —.488728 . 155276 —. 186665 . 102896 —.774047 . 304062
X, —. 317532 —. 585525 . 387861 —.613078 —.024618 . 171542
X3 —.325534 —.607410 —. 119596 677714 . 221660 . 048460
X —.385216 . 294474 . 708899 . 240910 —.014109 —.451795
Xs —.452813 . 421095 —. 049578 . 075490 .578309 .524444
Xs —.448235 . 008154 —. 543526 . 300858 . 128340 —.629771
Eigenvalue 3.7999 1.0551 .6235 . 4266 . 0629 .0317
Proportion .6333 . 1759 . 1039 0711 . 0105 . 0053
Cumulative
.6333 . 8092 .9131 . 9842 . 9947 1. 0000

Proportion
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Fig. 1. Scatter Plot of r. versus y.*
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Table 4. ", ts, Fa’, hi*, and hw
Row &” Tia T hi* hui
1 . 041150 .021710 . 020578 . 717919 . 717932
2 —.406078 —. 160996 —. 152879 .500482 .501777
3 -.799176 -. 279180 —.265281 . 356599 .361614
4 1.010373 . 339144 . 323539 .303119 .311134
5 —. 538058 —. 172275 —.163371 . 234092 . 236365
6 —2.936843 —. 896670 —. 886647 .157711 .225431
7 . 082599 . 026172 . 024785 . 217937 .217991
8 5.001830 1. 80925 2.043408 . 399868 . 596302
9 —. 696050 —. 219866 —.209143 .213084 . 216888
10 —3.341525 —1.240794 —1.271169 .430551 .518220
11 —1.139843 —.361975 —.345970 .221432 .231633
12 4.493012 1.598399 1.727911 . 379604 .538106
13 5.308437 1. 607700 1.750274 . 143972 . 365226
14 —.611123 —. 224886 —.214069 .420175 .423107
15 —5.468735 —1.836095 —2.095293 . 303457 . 538275
T 15 Al T T co T ] ‘5
L ‘ o F - ol 1o
[ : I T 1%
I 11 1o
g 1ot 141 ]
i | = 4 5
1| 18
r IA~T q 2T o'
- 1@ 19 ]
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11 1ot 1o
[} o~} g
i 18| 1 16t 1o
191 1@t 1@
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] I ]
i - o0 {of - 18
1 . T 1 . : o
fa® hi* hui

Fig.

3. Boxplots of r., h:*, and hwi
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Fig. 4. L-R plot
Table 5. Influence Measures
ROW WK;‘ Ci* Ci'

1 . 173063 . 008637 1. 223204
2 . 118442 . 006005 . 164332
3 . 188799 .011415 .100737
4 . 127122 . 008788 .011049
5 . 094152 . 002238 . 013899
6 . 079869 . 020866 .017492
7 .027385 .000161 . 006761
8 2.040672 . 406936 . 193196
9 . 059258 .001243 .032152
10 1.044241 .222112 .626418
11 . 182800 . 006720 . 029430
12 1. 022652 .301711 . 724575
13 . 370837 . 055851 .030583
14 . 168849 . 006830 . 529440
15 . 903245 . 266475 . 185863
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Fig. 5. Boxplots of WK*, C*, AP*® and CW/

Table 6. Measures Based on the Volume of Confidence Ellipsoids
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Row AP* AP** cw;"
1 .639503 . 836638 —1.198021
2 . 424886 .921989 —1.554768
3 . 288840 .461735 —.584342
4 . 240760 .417471 —.517109
5 . 166288 . 270025 —. 446044
6 . 160146 .678051 —. 562536
7 . 147713 .311064 —.484709
8 .528446 .640801 .423012
9 . 149045 .357170 —.488106
10 .453835 . 522655 —.117628
11 . 167085 . 249999 —. 377584
12 . 467466 . 605699 —. 162883
13 . 299292 . 365963 .449783
14 .355152 .474885 —. 584309
15 . 470974 . 644044 .490724
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6. Concluding Remarks

In Sections 3 and 4, we suggested several diagnostic measures for detection of outliers or
influential observations when principal component regression(PCR) was used. We have seen
that many of these measures are closely related. Therefore, the analyst should choose some
of the diagnostic measures that can assess the influence of each case on the particular features
of interest depending on the specific goals of analysis.

To get an idea of the sensitivity of the data, the resulting fit should be examined in detail.
To compute and calculate various matrix manipulations, we have used the statistical software,
M Matrix Language for Statistics and Matrix Algebra, and Statgraphics has been used to make
various statistial figures.

In Section 5, a numerical example was illustrated. Some individual data points may be flagged
as outliers, high-leverage points, or influential points. Any point falling into one of these categories
should be carefully examined for accuracy(transcription error, etc), relevancy(whether it belongs
to the data set or not), or special significance(abnormal conditions. etc).

Acknowledgement

The authors would like to give deep appreciation to the referees for their kind suggestions
and comments in improving this work.

References

1. Belsley, D.A., Kuh, E., and Welsh, R.E.(1980). Regression Diagnostics - Indentifying Influential
Data and Sources of Collinearity, New York : John Wiley & Sons

2. Chatterjee, S. and Hadi, A.S.(1988). Sensitivity Analysis in Linear Regression, John Wiley & Sons.

3. Cook, R.D.(1977). Detection of Influential Observations in Linear Regession. Technometrics, 19,
15-18.

4. Jolliffe, I.T.(1986). Principal Component Analysis. Springer-Verlag.

5. Mandel, J.(1982). Use of the Singular Value Decomposition in Regression Analysis. The American
Statistican, 36, 15-24.



