• Title/Summary/Keyword: PPG Signal

Search Result 136, Processing Time 0.026 seconds

Heart Rate Estimation Based on PPG signal and Histogram Filter for Mobile Healthcare

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.112-115
    • /
    • 2010
  • The heart rate is the most important vital sign in diagnosing heart status. The simple method to measure the heart rate in the mobile healthcare device is using the PPG signal. In developing the mobile healthcare device using the PPG signal, the most important issue is the inaccuracy of the measured heart rate because the PPG signal is distorted from the user's motions. To improve the problem, this study proposed the new method that is to estimate the heart rate without an additional sensor in real life. The proposed method in this study is using the histogram filter. In order to evaluate the performance of the proposed method, the study compares its results with the moving average method in motion environment. According to the experimental results, the performance of the proposed method was more than 40% better than the performances of the MAF.

The Periodic Moving Average Filter for Removing Motion Artifacts from PPG Signals

  • Lee, Han-Wook;Lee, Ju-Won;Jung, Won-Geun;Lee, Gun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • The measurement accuracy for heart rate or $SpO_2$ using photoplethysmography (PPG) is influenced by how well the noise from motion artifacts and other sources can be removed. Eliminating the motion artifacts is particularly difficult since its frequency band overlaps that of the basic PPG signal. Therefore, we propose the Periodic Moving Average Filter (PMAF) to remove motion artifacts. The PMAF is based on the quasi-periodicity of the PPG signals. After segmenting the PPG signal on periodic boundaries, we average the $m^{th}$ samples of each period. As a result, we remove the motion artifacts well without the deterioration of the characteristic point.

Design of Filter to remove motion artifacts of PPG signal using Amplitude Modulation of Optical Power and Independent Components Analysis (광전력 진폭변조와 ICA를 이용한 PPG 신호의 동잡음 제거 필터 설계)

  • Lee, Ju-Won;Lee, Byoung-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.691-697
    • /
    • 2013
  • Recently, u-healthcare device is developed and commercialized for healthcare management and emergency medical. The kinds of the measurable biomedical signals on the device are electrocardiogram, skin temperature, pulse oxygen, heart rate, respiration, etc. Specially, the photoplethysmograph(PPG) signal of these signals is the important signal in measuring oxygen, heart rate and peripheral vascular compliance. The accuracy of PPG signal reduce from influence of the motion artifacts that generated from the movements of user or patient. Therefore, this study suggests a new method to remove the motion artifact that is using optical power modulation and ICA(Independent Component Analysis). For analyzing the proposed method, we used variety of noises made by artificially. In the results of experiments, the proposed method showed good performances than an adaptive filter.

Design of Filter to Reject Motion Artifacts of PPG Signal Using Multiwave Optical Source (다파장 광원을 이용한 광용적 맥파의 동잡음 제거 필터 설계)

  • Park, Heejung;Nam, Jaehyun;Lee, Juwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • This study is proposed the novel PPG sensor device and the signal processing method to replace the acceleration sensor that is used to reject motion artifacts contained in photoplethysmography(PPG). The proposed method is to reject motion artifacts by an adaptive filter based on the estimated motion artifact by using a blue LED light. To evaluate the performance of the proposed method experimentally, We did design a novel sensor consisted of blue/red LEDs and photo-sensor and implemented, and then rejected the motion artifacts by using an adaptive filter and the implemented sensor. In the results of the experiments, it is shown that the proposed sensor device and signal processing can reconstruct the PPG signal despite the occurrence of motion artifacts, and also that the SNR was 4.5 times of moving average filter. According to the experimental results, the proposed method can be applied to design a low-cost device.

Design of ICA to Extract Respiration Signal From PPG Signal

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.220-223
    • /
    • 2011
  • Respiration signal of the vital signs is an important parameter in clinical parts. To extract the respiration signal from PPG signal for mobile healthcare system is difficult because the bands of the motion artifacts and respiration in the frequency domain are overlapped. This study to improve this problem suggested a respiration extraction method using the independent component analysis and evaluated its performances. In results of evaluation, the ICA method showed better performance than LPF suggested recently.

Development of a Human Sensibility Evaluation and Biofeedback System using PPG (맥파를 이용한 감성평가 및 바이오피드백 시스템 개발)

  • Lee, Hyun-Min;Kim, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1087-1094
    • /
    • 2008
  • This study describes a system for human sensibility evaluation using PPG(photoplethysmogram) signal and biofeedback algorithm to respond the bad(negative) mood. For this objective, PPG signals for two emotional states(positive/negative) are collected. To evoke the test emotions, happy(or joyful) and sad(or irritating) movie files are collected and played in subjects' monitor. From the acquired PPG signal, the heart rate variability(HRV) is calculated. Using the HRV and its FFT spectra, the human sensibility is evaluated. Since the heart is a representative organ which is controlled by the autonomic nervous system(ANS), the ANS may reflect the changes in emotion. The biofeedback algorithm is designed with motion image player interacting with the results of the sensibility evaluation. It was shown that HRV was changed according to the subject's emotions. Accordingly, the sensibility evaluation test showed feasibility of the our method.

Sensitivity illumination system using biological signal (생체신호를 이용한 감성조명 시스템)

  • Han, Young-Oh;Kim, Dong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.499-508
    • /
    • 2014
  • In this paper, we implemented a LED sensitivity illumination system, being driven in response to changes in the biological signals of GSR and PPG signal. After measuring biological signals of a human body from GSR and PPG sensor modules, MCU decided the state of relaxation or arousal of the subject, being based on the wake relaxation identifying map proposed in this paper. A developed LED sensitivity illumination system makes the subject to reach a normal state by giving a change of the LED illumination color, corresponding to a state of the subject.

A Human Sensibility Evaluation and Biofeedback Technology using PPG (PPG를 이용한 감성평가 및 바이오피드백 기술)

  • Lee, Hyun-Min;Kim, Dong-Jun;Yang, Hee-Kyeong;Kim, Kyeong-Seop;Lee, Jeong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2010-2012
    • /
    • 2008
  • This study describes a system for human sensibility evaluation using PPG(photoplethysmogram) signal and biofeedback algorithm to respond the bad(negative) mood. For this objective, PPG signals for two emotional states(positive/negative) are collected. To evoke the test emotions, happy(or joyful) and sad(or irritating) movie files are collected and played in subjects' monitor. From the acquired PPG signal, the heart rate variability(HRV) is calculated. Using the HRV and its FFT spectra, the human sensibility is evaluated. Since the heart is a representative organ which is controlled by the autonomic nervous system(ANS), the ANS may reflect the changes in emotion. The biofeedback algorithm is designed with motion image player interacting with the results of the sensibility evaluation. It was shown that HRV was changed according to the subject's emotions. Accordingly, the sensibility evaluation test showed feasibility of the our method.

  • PDF

PPG Filtering Method for Respiration Measurement in U-Health Care System (U-Health Care 환경에서 호흡측정을 위한 PPG 최적필터기술)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Nam, Ki-Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.95-101
    • /
    • 2008
  • This research is to develop PPG filtering method for respiration measurement in U-Health Care system. Respiration rate was determined by filtering PPG and analyzing its spectrum. Optimal filter of PPG has been selected to get respiration by testing 120 sets of experiment data using 700 filtering cases. As a result, 2nd order Bessel-filter that used band-pass cutoff frequency at 0.175~0.4Hz with second order was good at developing respiration signal. Respiration signal in time domain could be continuously analyzed by converting frequency domain using spectrum analysis. 24 seconds has been found to be optimal time duration of collecting PPG data for determining respiration. Therefore, this study was successful of getting not only heart activity but also respiration by only PPG. Minimal invasive measurement obtaining multi-bio information by one sensor can be expected to apply to U-Health Care and human computer interaction.

Breathing Information Extraction Algorithm from PPG Signal for the Development of Respiratory Biofeedback App (호흡-바이오피드백 앱 개발을 위한 PPG기반의 호흡 추정 알고리즘)

  • Choi, Byunghun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.794-798
    • /
    • 2018
  • There is a growing need for a care system that can continuously monitor, manage and effectively relieve stress for modern people. In recent years, mobile healthcare devices capable of measuring heart rate have become popular, and many stress monitoring techniques using heart rate variability analysis have been actively proposed and commercialized. In addition, respiratory biofeedback methods are used to provide stress relieving services in environments using mobile healthcare devices. In this case, breathing information should be measured well to assess whether the user is doing well in biofeedback training. In this study, we extracted the heart beat interval signal from the PPG and used the oscillator based notch filter based on the IIR band pass filter to track the strongest frequency in the heart beat interval signal. The respiration signal was then estimated by filtering the heart beat interval signal with this frequency as the center frequency. Experimental results showed that the number of breathing could be measured accurately when the subject was guided to take a deep breath. Also, in the timeing measurement of inspiration and expiration, a time delay of about 1 second occurred. It is expected that this will provide a respiratory biofeedback service that can assess whether or not breathing exercise are performed well.