• Title/Summary/Keyword: POWER SPECTRAL DENSITY

Search Result 467, Processing Time 0.037 seconds

The Design of PC-based Power Spectral Density Analyzer of Heart Rate Variability (PC-기반의 심박변동 팍워스픽트럼밀도 분석기 설계)

  • 김낙환;이응혁;민홍기;홍승홍
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.547-553
    • /
    • 2003
  • In this paper, we designed the PC-based analyzer of the power spectral density that could estimate the heart rate variability from time series data of R-R interval. The power spectral density estimated that it applied the autoregressive model to the measured electrocardiogram during a short period. Also, the characteristics of the designed analyzer are that it could process of the signal filtering, the generation and recomposition of time series and the feature extraction at the same time. Especially the analyzer reconstructed which applied the lowpass filter of the time series composed by the linear interpolation so as to enhance the signal-to-noise feature. We could estimate the power spectral density that confirmed a variety of power peak with low frequency range and high frequency rang of autonomic nerve by the heart rate variability.

Butterworth Window for Power Spectral Density Estimation

  • Yoon, Tae-Hyun;Joo, Eon-Kyeong
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.292-297
    • /
    • 2009
  • The power spectral density of a signal can be estimated most accurately by using a window with a narrow bandwidth and large sidelobe attenuation. Conventional windows generally control these characteristics by only one parameter, so there is a trade-off problem: if the bandwidth is reduced, the sidelobe attenuation is also reduced. To overcome this problem, we propose using a Butterworth window with two control parameters for power spectral density estimation and analyze its characteristics. Simulation results demonstrate that the sidelobe attenuation and the 3 dB bandwidth can be controlled independently. Thus, the trade-off problem between resolution and spectral leakage in the estimated power spectral density can be overcome.

  • PDF

Iterative Image Restoration Algorithm Using Power Spectral Density (전력밀도 스펙트럼을 이용한 반복적 영상 신호 복원 알고리즘)

  • 임영석;이문호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.713-718
    • /
    • 1987
  • In this paper, an iterative restoration algorithm from power spectral density with 1 bit sign information of real part of two dimensional Fourier transform of image corrupted by additive white Gaussian noise is proposed. This method is a modified version of image reconstruction algorithm from power spectral density. From the results of computer simulation with original 32 gray level imgae of 64x64 pixels, we can find that restorated image after each iteration converge to original image very fast, and SNR gain be at least 8[dB] after 10th iteration for corrupted image with additive white Gaussian noise.

  • PDF

Generation of Road Surface Profiles with a Power Spectral Density Function (전력밀도함수를 이용한 노면형상 생성에 관한 연구)

  • 김광석;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.136-145
    • /
    • 1997
  • To analyzed ride quality and to predict durability in vehicle dynamics, it is essential to describe a road surface profile precisely. This paper presents a technique to generate road surface profiles in a spatial domain by using a power spectral density function. A single track power spectral density function is proposed to describe a road surface profile, which is also applicable for multi-track vehicle response analysis, The derived road surfaces are compared to ISO(International Organization for Standardization) standards and classifications, proposed by the MIRA(Motor Industry Research Association). The methodology in this paper is also proposed to generate road roughness description with a limited external data. A small amount of external curve data is combined with an internal PSD function to generate road surface roughness in a spatial domain.

  • PDF

Assessment of stress in virtual reality environment using power spectral density ratio and second derivative of photoplethysmography (광 혈류 신호의 주파수 파워 특성과 이차 미분값을 이용한 가상환경의 스트레스 평가)

  • Y.H. Nam;Kim, H.T.;H.D. Ko;Park, K.S.
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.169-172
    • /
    • 2001
  • There are many people who suffer from simulation sickness when immersing in virtual reality. In this study, we analyzed two photoplethysmogram(PPG) parameters - a second derivative parameter and power spectral density ratios - in order to relate PPG parameters with simulation sickness. 36 young, healthy subjects were participated in the experiment, and each subject was equipped with a PPG electrode during his or her immersion. Simulation sickness section was defined as a 7 - second section which starts from the point where a subject reported simulation sickness, and normal section as a same-length section where no physical stimuli was presented to him or her. We compared the PPG parameters of the simulation sickness sections with the normal sections, - d/a ratio is believed to have lower value during vasodilation and higher value during vasoconstriction, however, we could not find much difference in the parameter between normal and simulation sickness sections. We also compared 1 to 10Hz power spectral density ratios in normal sections with in simulation sickness section, and found that 6 density ratios among them have different value. Therefore, the density ratios might be utilized as parameters to detect simulation sickness of subjects.

  • PDF

A Proposal of Reference Power Spectral Density Functions Compatible with Highway Bridge Design Specta (도로교 내진설계 스펙트럼에 부합하는 표준 PSD함수의 제안)

  • Choi, Dong Ho;Lee, Sang Hoon;Koh, Jung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.59-67
    • /
    • 2008
  • Acceleration time history used in the seismic analysis of nuclear power plant structures should envelop a target power spectral density (PSD) function in addition to the design response spectrum in order to have sufficient energy at each frequency for the purpose of ensuring adequate load. The safety for complex long-span highway bridges cannot be over-emphasize. An alternative method to improve the seismic capacity is to ensure the minimum PSD function of the applied seismic load. This study proposes a technical scheme to obtain the reference power spectral density function by using artificial earthquakes which are compatible with the highway bridge design spectrum.

Measurements and Analysis of Truck Transport Vibration Characteristics on the Gyungbu and 88 Highway (경부고속도로와 88고속도로에 대한 트럭수송시의 진동 특성 측정 및 분석 연구)

  • Park, In-Sik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Measurements of accelerometer levels transmitted from the floor in commercials truck shipments were carried out transportation of 300 Kg-load from Gyungbu Highway(Waegouan-Seoul) to 88 Highway(Gwangju-Daegu). Different characteristics were observed the values measured the vibration levels with directions in the two Highway's as a function of road condition and truck speed. The results showed that the vibration levels of the Gyungbu Highway is much higher than those of the 88 Highway. A following analysis on the obtained values was used to get the acceleration spectral density (ASD) and power spectral density (PSD). For the entire transit route, the results showed that the level of vibration to vertical direction was significant effects for damaging the products carried compared to other directions such as longitudinal and transverse. This paper provides an updated history of measured characteristics of vibration levels for highways using mainly in domestic area.

  • PDF

Precise spectral analysis using a multiple band-pass filter for flash-visual evoked potentials

  • Asano, Fumitaka;Shimoyama, Ichiro;Kasagi, Yasufumi;Lopez, Alex
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.44-50
    • /
    • 2002
  • The fast Fourier transform (FFT) is a good method to estimate spectral density, but the frequency resolution is limited to the sampling window, and thus the precise characteristics of the spectral density for short signals are not clear. To solve the limitation, a multiple band-pass filter was introduced to estimate the precise time course of the spectral density for flash visual evoked potentials (VEPs). Signals were recorded during -200 and 600 ms using balanced noncephalic electrodes, and sampled at 1 K Hz in 12 bits. With 1 Hz and 10 ms resolutions, spectral density was estimated between 10 and 100 Hz. Background powers at the alpha-and beta-bands were high over the posterior scalp, and powers around 200ms were evoked at the same bands over the same region, corresponding to P110 and N165 of VEPs. normalized's spectral density showed evoked powers around 200 ms and suppressed powers following the evoked powers over the posterior scalp. The evoked powers above the 20Hz band were not statistically significant. However, the gamma band was significantly evoked intra-individually; details in the gamma bands were varied among the subjects. Details of spectral density were complicated even for a simple task such as watching flashes; both synchronization and desynchronization occurred with different distributions and different time courses.

  • PDF

Structural damage identification with power spectral density transmissibility: numerical and experimental studies

  • Li, Jun;Hao, Hong;Lo, Juin Voon
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.15-40
    • /
    • 2015
  • This paper proposes a structural damage identification approach based on the power spectral density transmissibility (PSDT), which is developed to formulate the relationship between two sets of auto-spectral density functions of output responses. The accuracy of response reconstruction with PSDT is investigated and the damage identification in structures is conducted with measured acceleration responses from the damaged state. Numerical studies on a seven-storey plane frame structure are conducted to investigate the performance of the proposed damage identification approach. The initial finite element model of the structure and measured acceleration measurements from the damaged structure are used for the identification with a dynamic response sensitivity-based model updating method. The simulated damages can be identified accurately without and with a 5% noise effect included in the simulated responses. Experimental studies on a steel plane frame structure in the laboratory are performed to further verify the accuracy of response reconstruction with PSDT and validate the proposed damage identification approach. The locations of the introduced damage are detected accurately and the stiffness reductions in the damaged elements are identified close to the true values. The identification results demonstrated the accuracy of response reconstruction as well as the correctness and efficiency of the proposed damage identification approach.

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.