• Title/Summary/Keyword: POWER LEG

Search Result 342, Processing Time 0.021 seconds

Effect of Power Grasping on Muscle Activity of Trunk during One Leg Stance

  • Kong, Yong-Soo;Hwang, Yoon-Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.91-94
    • /
    • 2017
  • Purpose: This study investigated the effects of trunk muscle activity with power grasping during one leg stance. Methods: Twenty-eight subjects participated in this study. Subjects were divided into two groups, one that performed power grasping, and another that did not. An investigator measured the activities of a subject's trunk muscle such as internal oblique (IO), external oblique (EO), erector spinae (ES), and gluteus medius (GM) while a subject was doing one leg stance. Results: An independent t-test was used to analyze trunk muscle activities with power grasping during one leg stance between the experimental group and the control group. Only the EO activity differed significantly between groups (p<0.05). Conclusion: The results indicate that one leg stance with power grasping affected trunk muscle activity. Therefore, this is a useful method for providing lumbar spine stability.

Analysis of the Differences of the Shock Attenuation Strategy between Double-leg and Single-leg Landing on Sagittal Plane using Statistical Parametric Mapping (Statistical Parametric Mapping을 이용한 시상면에서의 양발 착지와 외발 착지의 전략 차이)

  • Ha, Sunghe;Park, Sang-Kyoon;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2019
  • Objective: The purpose of this study was to investigate differences of shock attenuation strategies between double-leg and single-leg landing on sagittal plane using statistical parametric mapping. Method: Nine healthy female professional soccer players (age: 24.0±2.5 yrs, height: 164.9±3.3 cm, weight: 55.7±6.6 kg, career: 11.2±1.4 yrs) were participated in this study. The subjects performed 10 times of double-leg and single-leg landing from the box of 30 cm height onto force plates respectively. The ground reaction force, angle, moment, angular velocity, and power of the ankle, knee, and hip joint on sagittal plane was calculated from initial contact to maximum knee flexion during landing phase. Statistical parametric mapping was used to compare the biomechanical variables of double-leg and single-leg landing of the dominant leg throughout the landing phase. Each mean difference of variables was analyzed using a paired t-test and alpha level was set to 0.05. Results: For the biomechanical variables, significantly increased vertical ground reaction force, plantarflexion moment of the ankle joint, negative ankle joint power and extension moment of the hip joint were found in single-leg landing compared to double-leg landing (p<.05). In addition, the flexion angle and angular velocity of the knee and hip joint in double-leg landing were observed significantly greater than single-leg landing, respectively (p<.05). Conclusion: These findings suggested that negative joint power and plantarflexion moment of the ankle joint can contribute to shock absorption during single-leg landing and may be the factors for preventing the musculoskeletal injuries of the lower extremity by an external force.

LabVIEW-based Remote Laboratory Experiments for a Multi-mode Single-leg Converter

  • Bayhan, Sertac
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1069-1078
    • /
    • 2014
  • This study presents the design and implementation of a web-based remote laboratory for a multi-mode single-leg power converter, which is a topic in advanced power electronics course. The proposed laboratory includes an experimental test rig with a multi-mode single-leg power converter and its driver circuits, a measurement board, a control platform, and a LabVIEW-based user interface program that is operated in the server computer. Given that the proposed web-based remote laboratory is based on client/server architecture, the experimental test rig can be controlled by a client computer with Internet connection and a standard web browser. Although the multi-mode single-leg power converter can work at four different modes (main boost, buck-boost, boost-boost, and battery boost modes), only the buck-boost mode is used in the experiment because of page limit. Users can choose the control structure, control parameters, and reference values, as well as obtain graphical results from the user interface software. Consequently, the feedbacks received from students who conducted remote laboratory studies indicate that the proposed laboratory is a useful tool for both remote and traditional education.

DC-Link Voltage Balance Control in Three-phase Four-wire Active Power Filters

  • Wang, Yu;Guan, Yuanpeng;Xie, Yunxiang;Liu, Xiang
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1928-1938
    • /
    • 2016
  • The three-phase four-wire shunt active power filter (APF) is an effective method to solve the harmonic problem in three-phase four-wire power systems. In addition, it has two possible topologies, a four-leg inverter and a three-leg inverter with a split-capacitor. There are some studies investigating DC-link voltage control in three-phase four-wire APFs. However, when compared to the four-leg inverter topology, maintaining the balance between the DC-link upper and lower capacitor voltages becomes a unique problem in the three-leg inverter with a split-capacitor topology, and previous studies seldom pay attention to this fact. In this paper, the influence of the balance between the two DC-link voltages on the compensation performance, and the influence of the voltage balance controller on the compensation performance, are analyzed. To achieve the balance between the two DC-link capacitor voltages, and to avoid the adverse effect the voltage balance controller has on the APF compensation performance, a new DC-link voltage balance control strategy for the three-phase four-wire split-capacitor APF is proposed. Representative simulation and experimental results are presented to verify the analysis and the proposed DC-link voltage balance control strategy.

A Novel Three-Phase Line-Interactive UPS System having AC Line Reactor and Parallel-Series Active Filters (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 라인 인터렉티브 무정전전원장치 시스템)

  • Ji Jun-Keun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.193-197
    • /
    • 2004
  • The four-leg Voltage Source Converter(VSC) can use the DC link voltage effectively by the 3-D SVPWM method. Hence the DC battery voltage can be reduced by $15\%$ in comparison to that of the conventional line-interactive UPS system. In this paper a novel line interactive Uninterruptible Power Supply(UPS) using the two four-leg VSCs is proposed. One VSC is in parallel with the ac link reactor of the power source side, and the other is in series with the load. The parallel four-leg voltage source inverter controls the three-phase line voltage independently in order to control the line reactor current indirectly. It eliminates the neutral line current and the active ripple power of the source side using the pqr theory so that unity power factor and the sinusoidal source current can be achieved even though both the source and the load voltages have zero sequence components. The series four-leg voltage source inverter compensates the line voltage and allows it to be balanced and harmonic-free. Both of the parallel and series four-leg voltage source inverters always act as independently controllable voltage sources, so that the three-phase output voltage shows a seamless transition to the backup mode. The feasibility of the proposed UPS system has been investigated and verified through computer simulations results.

  • PDF

Simplified Model Predictive Control Method for Three-Phase Four-Leg Voltage Source Inverters

  • Kim, Soo-eon;Park, So-Young;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2231-2242
    • /
    • 2016
  • A simplified model predictive control method is presented in this paper. This method is based on a future reference voltage vector for a three-phase four-leg voltage source inverter (VSI). Compared with the three-leg VSIs, the four-leg VSI increases the possible switching states from 8 to 16 owing to a fourth leg. Among the possible states, this should be considered in the model predictive control method for selecting an optimal state. The increased number of candidate switching states and the corresponding voltage vectors increase the calculation burden. The proposed technique can preselect 5 among the 16 possible voltage vectors produced by the three-phase four-leg voltage source inverters, based on the position of the future reference voltage vector. The discrete-time model of the future reference voltage vector is built to predict the future movement of the load currents, and its position is used to choose five preselected vectors at every sampling period. As a result, the proposed method can reduce calculation load by decreasing the candidate voltage vectors used in the cost function for the four-leg VSIs, while exhibiting the same performance as the conventional method. The effectiveness of the proposed method is demonstrated with simulation and experiment results.

Novel PWM Methods for Two-Leg and Four-leg Two-Phase Inverter Fed Two-Phase Induction Motor (2상 유도전동기 구동 2상 인버터를 위한 새로운 PWM제어방식 I - 2-레그 타입 및 4-레그 타입의 경우 -)

  • Jang Do-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.331-338
    • /
    • 2005
  • In this paper the novel pulsewidth modulation(PWM) technique for the two-leg and four-leg two-phase inverter is proposed. The conventional space vector PWM technique for two-phase inverter was complex. The proposed PWM for two-leg inverter, which is used by sinusoidal PWM method, is simpler than the conventional SVPWU technique. Also, a simple PWM technique for four-leg two-phase inverter is proposed. Such PWM technique is based on PWM technique for two-leg inverter. Practical verification of theoretical predictions is presented to confirm the capabilities of the new techniques.

Improved Zero Voltage and Zero Current Switching Full Bridge PWM Converter with Active Clamp

  • Baek, J.W.;Cho, J.G.;Jeong, C.Y.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.687-693
    • /
    • 1998
  • An improved zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter is proposed to solve the problems of the previously presented ZVACS-FB-PWM converter with secondary active clamp such as narrow ZVS range of leading-leg switches [6]. By adding an auxiliary inductor in between the leading-leg and separated input source voltages, the ZVS of leading leg switches can be extended to the whole line and load ranges, which eliminates unwanted hard switching of clamp switch and simplifies its control. The principle of operation is explained and analyzed. The features and design considerations of the proposed converter are also illustrated and verified on a 3 kW, 100 KHz IGBT based experimental circuit.

  • PDF

Development of Novel 3-Phase Line-interactive UPS System using 4-leg PWM Converter/Inverter and AC Reactor (4-레그 PWM 컨버터/인버터와 AC 리액터를 사용한 새로운 3상 라인 인터렉터브 무정전전원장치의 개발)

  • Ji Jun-Keun;Kim Hyo-sung;Sul Seung-Ki;Kim Kyung-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.77-81
    • /
    • 2004
  • In this paper a novel line interactive UPS (Uninterruptible Power Supply) using the two 4-leg VSCs and AC line reactor is proposed. The 4-leg Voltage Source Converter(VSC) can use the DC link voltage effectively by the 3-D SVPWM method. Hence the DC battery voltage can be reduced by $15\%$ in comparison to that of the conventional line-interactive UPS system. One VSC is in parallel with the AC line reactor of the power source side, and the other is in series with the load. The parallel 4-leg voltage source inverter controls three-phase line voltage independently in order to control the line reactor current indirectly. It eliminates the neutral line current and the active ripple power of the source side using the pqr theory so that unity power factor and the sinusoidal source current can be achieved even though both the source and the load voltages have zero sequence components. The series 4-leg voltage source inverter compensates the line voltage and allows the load voltage to be balanced and harmonic-free. Both of parallel and series 4-leg voltage source inverters always act as independently controllable voltage sources, so that three-phase output voltage shows a seamless transition to the backup mode. The feasibility of the proposed UPS system has been investigated and verified through computer simulation results.

  • PDF

A Novel PWM Method for Three-Leg Two-Phase Inverter Fed Two-Phase Induction Motor (2상 유도전동기 구동 2상 인버터를 위한 새로운 PWM제어방식 II - 3-레그 타입의 경우 -)

  • Jang Do-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.339-346
    • /
    • 2005
  • It is complex to realize the reference voltage vector by the space vector PWM method in three-leg two-phase inverter In this paper a new PWM technique for three-leg two-phase inverter fed two-phase induction motor is poroposed assuming that three-leg two-phase inverter is equivalent circuit for 'four-leg two-phase inverter with the connected two windings'. From assumption, six sectors are decreased to four sectors, and simple sinusoidal PWM method instead of SVPWM is applied to three-leg two-phase inverter. Also, the switching pattern to determine the switching periods at each sector is proposed. Practical verification of theoretical predictions is presented to confirm the capabilities of the new techniques.