이변량 빈도해석은 일반적으로 고정지속기간 강우량에 대해 빈도해석하는 단변량 빈도해석에 비해 지속기간을 확률변수로 이용하여 강우량과 동시에 확률변수로 사용할 수 있다는 장점이 있다. 하지만 확률분포형의 차원이 증가하기 때문에 기존 단변량 빈도해석에서 요구되던 표본크기보다 더 많은 표본이 필요하다. 우리나라 강우관측소의 경우 오래된 관측소의 경우에도 기록년수가 60년을 넘지 않아 연최대계열로 확률표본을 작성할 경우 이변량 빈도해석을 수행하기에 부족할 수 있다. 따라서 본 연구에서는 Peaks Over Threshold (POT) 방법을 이용하여 적정 확률표본을 선택하는 연구를 진행하였다. 서울 기상청 지점의 강우자료로부터 최소무강우시간을 이용하여 모든 강우사상을 추출하였으며 각 강우사상의 강우량과 지속기간이 확률변수로 사용되었다. 기존에 알려진 POT 방법들과 Anderson-Darling 적합도 검정을 이용한 절단값 산정방법등을 적용하여 확률표본 개수의 변화에 따른 주변분포형의 적합도 검정과 이변량 확률모형의 적합성을 살펴보았다.
자동차보험의 손해율이란 지급보험금의 수입보험료에 대한 비율을 의미한다. 손해율이 매우 큰 값을 갖는 대형손실이 일어나는 경우에는 보험회사의 재무적인 부분에 큰 악영향을 미치게 된다. 따라서 보험회사가 이에 대비할 수 있도록 하기 위하여 손해율의 극단 분위수(extreme quantile)를 추정하는 것은 매우 중요한 일이다. 다른 종류의 보험 관련 데이터와 같이 손해율의 분포는 오른쪽으로 긴 꼬리를 갖는 두꺼운 꼬리분포(heavy-tailed distribution)를 갖는다. 이런 자료에서 극단 분위수룰 추정하기 위하여 가장 많이 사용되는 방법론은 POT(Peaks over threshold)와 Hill 추정(Hill estimation)이다. 본 논문에서는 일반화파레토분포(generalized Pareto distribution; GPD)의 다양한 모수추정방법론의 성능을 모의실험과 실제 손해율 데이터를 사용하여 비교, 분석하였다. 또한 Hill 추정치를 사용하여 극단 분위수를 추정하였다. 그 결과 대부분의 경우에 POT 방법론이 Hill 추정치를 이용한 방법보다 정확한 분위수를 추정하였고, 모수추정방법론 중에서는 MLE, Zhang, NLS-2 방법론이 가장 좋은 결과를 보여주었다.
국제적인 금융위기가 연달아 발생하면서, 금융리스크관리의 중요성이 어느 때보다 더 커지고 있다. 금융리스크관리의 주요 현안 가운데 하나는 리스크를 어떻게 측정할 것인가이며, 가장 널리 사용되고 있는 방법이 Value at Risk(VaR)이다. 금융자료가 최근 시장에서처럼 두꺼운 꼬리를 갖는 분포를 보일 때, 우리는 극단치 이론을 이용하여 VaR를 측정하는 방법을 고려할 수 있다. 이 논문에서는 꼬리가 매우 두꺼운 분포를 갖는 자료를 적합시킬 때 많이 사용되는 Peaks over Threshold(POT)를 이용하여 VaR를 측정하는 방법을 연구하였다. POT를 이용하기 위해서는 우선 일반화 파레토 분포(GPD)의 모수를 추정해야 하는데, 여기서 우리는 KOSPI 5분 자료를 이용하여 추정된 VaR의 성능을 살펴봄으로써 세 가지 다른 모수추정 방법을 비교하였다. 또한, Normal Inverse Gaussian(NIG) 분포에서 자료를 생성하여 두 가지 다른 모수추정 방법을 비교하기도 하였다. 이러한 비교를 통하여 KOSPI 수익률 자료의 첨도가 매우 큰 경우에는 최근 제안된 모수추정 방법들이 최대가능도 추정법에 비해 월등히 나은 성능을 보임을 알 수 있었고, 모의실험 자료에서도 같은 결과를 확인하였다.
본 연구는 자연하천 유역에서의 수위관측점들을 대상으로 지점 홍수빈도해석을 실시하고 하천홍수량의 지역빈도해석에 의한 지역화 회귀모형을 개발한 것이다. 홍수빈도해석은 국내 주요 5대 하천유역인 한강, 금강, 영산강, 섬진강 및 낙동강 유역내에 있는 자연하천관측점들을 대상으로 홍수빈도모형을 이용하여 지점별 홍수량의 크기 및 빈도를 추정하였으며, 이를 바탕으로 홍수빈도예측을 위한 모형의 적용성과 효용성을 비교, 검토하였다. 그 결과 단기간 기록년수의 자료에서는 부분기간치계열 방법의 POT(Peaks Over a Threshold)모형이 연최대치계열 방법의 ANNMAX(ANNual MAXimum) 모형보다 효과적이고 합리적임이 판명되었다. 지역 홍수빈도해석에서 홍수빈도모형에 의한 지점별 홍수추정량과 홍수유출에 영향을 미치는 지형학적 유역 특성인자들간의 상관분석법에 의해 미계측 지점에서의 설계홍수량 추정이 용이한 지역화 회귀모형을 개발하고, 첨두홍수량과 유역 특성인자들간의 상관도를 재현기간별로 작성 제시하였다.
수문자료의 계절성은 수자원관리의 관점에서 매우 중요한 요소로서 계절성의 변동은 댐의 운영, 홍수조절, 관개용수 관리 등 다양한 분야와 밀접한 관계를 가지고 있다. 수문빈도해석을 위해 POT 자료와 같은 부분기간치계열을 사용함으로써 자료의 확충, 계절성 확보, 발생빈도모형의 구축 등이 가능하다. 본 연구에서는 POT 자료의 장점을 효과적으로 빈도해석에 연계시키는 방법론으로서 POT 자료로부터 계절성을 추출하고 이를 빈도해석과 연계시켜 Bayesian 기법을 기반으로 하는 비정상성 빈도해석 모형을 구축하였다. 서울지점의 관측 자료로부터 98% Threshold를 적용하여 POT 자료를 추출하였으며, GEV 분포에 대한적합성을 검토하였다. 위치 및 규모매개변수의 계절적변동성을 Fourier 급수로 표현하고, Bayesian Markov Chain Monte Carlo 모의를 통해 매개변수들의 사후분포를 추정하였으며, 사후분포와 Quantile 함수를 이용하여 재현기간에 따른 확률강수량을 추정하였다. 계절성을 고려한 비정상성빈도해석 결과 7~8월의 비정상성 확률강수량과 기존 정상성빈도해석의 결과가 유사한 값을 나타내고 있으며 동시에 계절성을 반영한 확률강수량의 거동을 효과적으로 모의가 가능하였다.
일반적으로 설계홍수량은 강우빈도 해석으로 설계강우량을 결정하고 이를 유역유출모형에 적용하여 계산된 유출량을 정상류모의를 통하여 산정하게 된다. 이러한 기존의 설계홍수량 산정방법은 설계강우량 산정에 있어 임의성을 포함하게 된다. 따라서 본 연구에서는 대상 하천 구간의 실측 수위자료를 사용하여 홍수량을 산정하는 방법을 제시하고자 한다. 분석대상 자료로서 남한강 여주지점의 실측 시유량을 선정하였으며 충주댐 완공 이후인 1988년부터 2007년까지의 기간을 대상으로 하였다. 빈도해석을 위한 분석 자료군을 연최대치 계열과 POT(Peaks Over Threshold) 계열의 두 가지 그룹으로 추출하여 홍수량을 추정하였다. 연최대치 계열 분석 결과 Weibull 분포를 적절한 분포형으로 선정하였으며 부분시계열 POT 빈도해석을 수집자료 전체와 기간을 전, 후 10년씩 나눈 세 그룹으로 나누어 수행하였다. 빈도별 확률홍수량 추정 결과 연최대치 계열을 사용한 결과가 부분시계열 POT 방법을 사용한 결과보다 크게 산정되었으며 자료 전체 기간에 대한 POT 빈도해석 결과보다 최근 10년간의 자료를 사용한 결과가 더 크게 나타나 홍수량의 증가 경향을 확인 할 수 있었다.
The existing concrete bridges are time-varying working systems, where the maintenance strategy should be planned according to the time-varying performance of the bridge. This work proposes a time-dependent residual capacity assessment procedure, which considers the non-stationary bridge load effects under growing traffic and non-stationary structural deterioration owing to material degradations. Lifetime bridge load effects under traffic growth are predicated by the non-stationary peaks-over-threshold (POT) method using time-dependent generalized Pareto distribution (GPD) models. The non-stationary structural resistance owing to material degradation is modeled by incorporating the Gamma deterioration process and field inspection data. A three-span continuous box-girder bridge is illustrated as an example to demonstrate the application of the proposed procedure, and the time-varying reliability indexes of the bridge girder are calculated. The accuracy of the proposed non-stationary POT method is verified through numerical examples, where the shape parameter of the time-varying GPD model is constant but the threshold and scale parameters are polynomial functions increasing with time. The case study illustrates that the residual flexural capacities show a degradation trend from a slow decrease to an accelerated decrease under traffic growth and material degradation. The reliability index for the mid-span cross-section reduces from 4.91 to 4.55 after being in service for 100 years, and the value is from 4.96 to 4.75 for the mid-support cross-section. The studied bridge shows no safety risk under traffic growth and structural deterioration owing to its high design safety reserve. However, applying the proposed numerical approach to analyze the degradation of residual bearing capacity for bridge structures with low safety reserves is of great significance for management and maintenance.
최근 다변량 확률모형을 이용한 빈도해석이 여러 수문분야에 걸쳐 연구되고 있다. 기존 일변량 빈도해석에 비해 변수활용에 대한 자유도와 물리적 현상을 정확하게 표현할 수 있다는 장점이 있으나, 표본자료의 부족, 매개변수 추정 및 적합도 검정 등의 어려움으로 실제 분야에 사용되기 어려운 점이 있다. 본 연구에서는 copula 모형에 대하여 Cramer-von Mises(CVM) 적합도 검정 시 표본자료의 적정 크기를 결정하기 위하여 Peaks-Over-Threshold(POT) 방법을 이용하였다. 서울지점의 기상청 시강우 자료를 이용하여 빈도해석을 수행하였으며, Gumbel copula 모형에 대하여 매개변수 추정은 maximum pseudolikelihood method(MPL) 방법을 이용하였다. 50년의 기록 자료에 대하여 표본크기를 50개부터 2500개까지 조절하여 CVM 통계값과 p-value를 기준으로 적정 표본크기를 산정하였다.
본 연구에서는 극치강우의 시간분포 연구를 위하여 서울지점 우량관측소의 자기기록지를 1분단위로 독취한 MMR(minutely data using the magnetic recording)자료와 최근 들어 관측을 시작한 AWS (automatic weather system) 분단위기상관측 자료를 이용하여 연최대치 계열의 중앙값을 기준으로 한 POT(peaks over threshold) 계열 추출을 통하여 강우의 최적 시간분포 모형을 개발하였다. 기존 Huff 방법에서의 최대 단점인 지속기간별 시간분포 변화 특성을 고려하지 못하는 점과 강우사상별 강우총량에 대한 기준강우량의 일괄적용 등의 문제를 개선하였으며, 분단위 관측자료의 가중치 적용을 통한 순위결정으로 최빈분위를 선택하고 IQR (interquartile range) matrix의 적용을 통한 Quartile별 호우사상을 추출하는 방법을 제안하였다. 마지막으로 추출된 분단위 무차원 단위우량주상도에 핵밀도함수를 적용하여 자료의 크기와 분포 특성을 고려한 지속기간별 최적 시간분포형을 유도하였다.
An extreme value analysis (EVA) is essential to obtain a design value for highly nonlinear variables such as long-term environmental data for wind and waves, and slamming or sloshing impact pressures. According to the extreme value theory (EVT), the extreme value distribution is derived by multiplying the initial cumulative distribution functions for independent and identically distributed (IID) random variables. However, in the position mooring of DNVGL, the sampled global maxima of the mooring line tension are assumed to be IID stochastic variables without checking their independence. The ITTC Recommended Procedures and Guidelines for Sloshing Model Tests never deal with the independence of the sampling data. Hence, a design value estimated without the IID check would be under- or over-estimated because of considering observations far away from a Weibull or generalized Pareto distribution (GPD) as outliers. In this study, the IID sampling data are first checked in an EVA. With no IID random variables, an automatic resampling scheme is recommended using the block maxima approach for a generalized extreme value (GEV) distribution and peaks-over-threshold (POT) approach for a GPD. A partial autocorrelation function (PACF) is used to check the IID variables. In this study, only one 5 h sample of sloshing test results was used for a feasibility study of the resampling IID variables approach. Based on this study, the resampling IID variables may reduce the number of outliers, and the statistically more appropriate design value could be achieved with independent samples.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.