• Title/Summary/Keyword: POSTURE STABILITY

Search Result 211, Processing Time 0.021 seconds

Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion (횡방향 틸팅 기능을 갖는 이륜 밸런싱 모바일 플랫폼 설계)

  • Kim, Sangtae;Seo, Jeongmin;Kwon, SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • Conventional two-wheeled balancing robots are limited in terms of turning speed because they lack the lateral motion to compensate for the centrifugal force needed to stop rollover. In order to improve lateral stability, this paper suggests a two-wheeled balancing mobile platform equipped with a tilting mechanism to generate roll motions. In terms of static force analysis, it is shown that the two-body sliding type tilting method is more suitable for small-size mobile robots than the single-body type. For the mathematical modeling, the tilting-balancing platform is assumed as a 3D inverted pendulum and the four-degrees-of-freedom equation of motion is derived. In the velocity/posture control loop, the desired tilting angle is naturally determined according to the changes of forward velocity and steering yaw rate. The efficiency of the developed tilting type balancing mobile platform is validated through experimental results.

Forensic Engineering Study on the Evaluation of the Structural Stability of the Mobile Crane Accident (차량크레인 전도 사고의 구조 안정성 평가에 관한 법공학적 연구)

  • Kim, Jong-Hyuk;Kim, Eui-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.11-17
    • /
    • 2013
  • Forensic Engineering is the area covering the investigation of products, structures that fail to perform or do not function as intended, causing personal injury or damage to property. To investigate the mobile crane's overturn accident in terms of the forensic engineering, in this study, we identified the accident mobile crane's position and posture before accident by the analysis of the trace resulted by the contact between the outrigger and the ground, and the accident remodeling has been performed using CATIA modeling program in the basis of the accident mobile crane's position and posture information. The accident analysis has been performed by comparing this accident remodeling and the crane's specification, the table of the allowance load about the boom's length and the working radius. Through these studies, the safety accident that may occur in mobile crane can be minimized by performing specialized and systematic investigation of the accident cause in terms of the forensic engineering.

Effects of Trunk Twist on Postural Sway During Manually Handling Flat Ties (플렛타이 인력물자취급서 몸통 비틀기에 따른 신체자세 동요에 대한 연구)

  • Kim, Sung-Won;Park, Sung-Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.38-44
    • /
    • 2010
  • We investigated the effects of trunk twist on postural stability during manually handling flat ties. Ten male subjects participated in this study. While handling 5kgf and 10kgf bundles of flat ties respectively, their centers of pressure (COPs) were measured under two levels of body position (twisted and fixed), two levels of direction (left and right), and three levels of object position ($30^{\circ}$, $45^{\circ}$, and $60^{\circ}$). Subjects' postural stability was quantified by calculating the sway length. Results showed that the effect of different object position was significant on postural sway length in subject's medio-lateral axis. Post-hoc multiple comparions revealed that, under the 5kgf load condition, the sway length was increased significantly as the object position increased to $45^{\circ}$. Under the 10kgf load condition, however, the sway length was increased significantly at the object position of $60^{\circ}$. Actual or potential applications of this research include guidelines for the design of working posture evaluation techniques.

Effect of Abdominal Draw In Maneuver in Sitting Position (앉은자세에서 실시하는 복부드로우인기법의 효과)

  • Kim, Seon-Chil;Kim, Shin-Gyun;Kim, Chang-sook
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.207-214
    • /
    • 2017
  • The problem of trunk stability is a major factor in back pain.. Abdominal draw in maneuver(ADIM), One of the trunk stabilization exercises to relieve lumbar instability, is a method of inducing selective contraction of the transverse abdominis associated with anticipatory posture control among the abdominal stabilization muscles. ADIM is usually performed with a visual feedback by applying a pressure biofeedback unit(PBU) under the lumbar at the supine position, which is not functional compared to the sitting position. This study was conducted to investigate the effect of ADIM applied in supine and sitting position on 31 healthy men and women. In each posture, muscle activity was measured by rectal abdominis (RA), external oblique (EO), transverse abdominis (TrA)/internal obilique (IO) and erector spinae (ES) using wireless EMG. In the result, there was no significant difference between RA and EO between the two postures and there was a significant difference between TrA / IO and ES. In both postures, the activity of TrA/IO was higher than that of RA, and the effect of ADIM was shown to be the same, whereas TrA/IO and ES showed higher activity in sitting position. This means that the activity of the muscles involved in the postural stability and lumbar stability is increased further in the sitting position. Therefore, ADIM in sitting, which can be applied more easily in daily life, is useful for improving lumbar stability.

The Effects of Gluteal Taping on Pelvic Alignment, Trunk Stability, and Balance during Sitting in Children with Unilateral Cerebral Palsy (편측 뇌성마비아의 볼기 테이핑이 앉은 자세에서 골반경사 및 몸통 안정성과 균형에 미치는 영향)

  • Seo, Hye-Jung;Kim, Joong-Hwi;Choi, Myung-Jin;Jeong, Hye-Su
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.5
    • /
    • pp.308-314
    • /
    • 2014
  • Purpose: The aim of this study was to investigate the effects of gluteal taping on pelvic alignment, trunk stability, and balance during sitting posture in children with unilateral cerebral palsy (CP). Methods: Thirteen children with unilateral cerebral palsy (six females. seven males; mean age 8.5) participated in this study. All participants were evaluated before and after gluteal taping using an Inclinometer for pelvic lateral inclination, trunk impairment scale (TIS) for trunk stability, and modified functional reaching test for balance during sitting. The collected data were analyzed using a paired t-test. Results: The results of this study were as follows: 1) Statistically significant decreases in the angle of pelvic lateral inclination were observed after gluteal taping in children with unilateral CP (p<.05). 2) Statistically significant increases in TIS score were observed after gluteal taping (p<.05). 3) Statistically significant increases in the range of reaching during sitting were observed after gluteal taping (p<.05). Conclusion: : In conclusion, this study showed that gluteal taping improves pelvic alignment, trunk stability, and balance during sitting in children with unilateral cerebral palsy. Further studies will be required to determine the short- and long-term effects of gluteal taping on improving postural symmetry, trunk stability, and balance.

The Effect of Training Program for the Balance on the Gait Stability (균형능력 향상 운동프로그램이 보행안정성에 미치는 영향)

  • Lee, Young-Taeck;Kim, Hoon;Shin, Hak-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.373-380
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of balance training on gait stability. The study population included 17 male high school students who were divided into 3 groups, each of which underwent one of the following types of balance-training programs for 8 weeks: 1 foot standing on cushion foam, trunk muscle training, and inverted body position training. 0, 4, and 8 weeks, the following experiment was performed: The participants were asked to close their eyes and take 17 steps; the stability of forward and sideward movement was determined, and the direction linearity was measured. The results revealed that all the training programs caused a decrease in stride deviation and an increase in the and the stride length, thereby improving the stability of forward movement. All the programs decreased the variation in step width and were thus also effective in improving the stability of sideward movement. The inverted body position training program was considered very effective because the cross point appeared on post hoc graphic analysis after 4 weeks, and the deviation length for 10 m was low, i.e., below 4 cm. All the programs were effective with respect to direction linearity because they decreased the deviation in direction widths. The results indicate that whole-body neurocontrol training is more effective than simple muscle training and local focused balance training, although this neurocontrol training-in the form of inverted body position training-required a longer training period than did the other programs.

Changes of Balance Ability according to the Stability of Shoes in Elderly Woman and Female University Student (신발의 안정성에 따른 여성노인과 여대생의 균형능력 변화)

  • Song, Yu-jin;Min, Gyeong-hun;Jeong, Deok-yong;Yook, Seon-young;Choi, Yun-young;Bae, Kyung-yoon;Cho, Ki Hun
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.3
    • /
    • pp.70-75
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the changes of static and dynamic balance control ability according to the stability of shoes in elderly woman and female university student. Design: Cross-sectional study. Methods: Six elderly women and seven female university students were recruited for this study. The subject's static and dynamic balance were evaluated while wearing two different types of shoes (comfortable running shoe and masai walking shoe). The BT4 system was used to measure the static (postural sway area and velocity) and dynamic balance (limit of stability on forward, backward and left and right side). The measurement of static and dynamic balance control ability was performed in standing posture wearing comfortable running shoes and masai walking shoes. Results: In the static balance control ability, both female university students and elderly women showed significant increase in postural sway area and velocity when wearing unstable shoes (p<0.05) In addition, in the dynamic balance control ability, both female university students and elderly women showed significant decrease in limit of stability on forward and backward when wearing unstable shoes (p<0.05). Conclusion: In selecting shoes for the elderly, the stability of shoe should be considered for prevention of falls.

Effects of Combined Exercise Training on Physical Performance, Falling Risk and Balance in Elderly Women (복합운동이 여성노인의 낙상관련 건강체력, 낙상위험도, 자세균형에 미치는 영향)

  • Park, Hyeok;Kim, Daeyeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.371-378
    • /
    • 2021
  • This study examined the effects of combined exercise training for preventing falls on the physical performance, falling index, and balance in elderly women. All subjects (N = 32) were recruited and divided randomly to either a combined exercise group (n= 16, EX) or non-exercise control group (n = 16, CON). During 12 weeks of training, the subjects in the EX performed the combined exercise programs (three times/week, 60min/session), and the subjects in the CON maintained their ordinary lives. At the PRE, MID, POST tests, All subjects completed senior fitness tests(dynamic balance, two minutes walking, sit and stand for 30 seconds), tests for falling risk with Tetrax, and tests for posture balance with the spine balance 3D. After the baseline tests, two-way repeated-measures ANOVA with contrast testing was used with SPSS 21.0. Alpha was set to 0.05. In the results, the dynamin balance (p=.001), two minutes walking (p=.001), sit and stand for 30 seconds (p=.001), falling risk (p=.002), and posture balance (p=.034) in the EX were significantly different, but not in the CON. Thus, elderly females who performed combined exercise training for 12 weeks can increase their physical fitness & posture stability and reduce their falling risk.

Changes of Body Balance on Static Posture According to Types of Induced Ametropia (정적자세에서 유도된 비정시의 유형에 따른 신체균형의 변화)

  • Kim, Sang-Yeob;Moon, Byeong-Yeon;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.239-246
    • /
    • 2014
  • Purpose: This study was performed to investigate the effect of induced ametropia on static posture for body balance. Methods: Twenty subjects (10 males, 10 females) of average age $23.4{pm}2.70$ years were participated and ametropia(binocular myopia; BM, simple myopic anisometropia; SMA, binocular hyperopia; BH, and simple hyperopic anisometropia; SHA) were induced with ${pm}0.50D$, ${\pm}1.00D$, ${\pm}1.50D$, ${\pm}2.00D$, ${\pm}3.00D$, ${\pm}4.00D$, ${\pm}5.00D$, respectively. General stability (ST), weight distribution index (WDI), and fall risk index (FI) were measured using TETRAX the biofeedback systems. Each index of the body balance was evaluated for 32 seconds in each ametropic condition and those value was compared with the value in fully corrected condition. Results: The ST showed significant increase from +0.50 D under condition of BM, from +1.00 D under condition of SMA, from -1.00 D under condition of BH, and from -1.50 D under condition of SHA compared with under condition of fully corrected condition, respectively. The FI showed significant increases from +4.00 D under condition of BM, from -1.00 D under condition of BH, and from -1.50 D under condition of SHA. The WDI show no change in all ametropia condition. Conclusions: Whatever ametropia is, uncorrected refractive error could reduce the general stability of body balance and increase the falling risk.

The Biomechanical Properties of the Shock Absorption Phase during Drop Landing According to Landing Types (드롭랜딩 시 착지형태에 따른 충격흡수구간의 운동역학적 특성)

  • Park, Gu-Tae;Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the biomechanical properties of shock absorption strategy and postural stability during the drop landing for each types. Methods : The motions were captured with Vicon Motion Capture System, with the fourteen infra-red cameras (100Hz) and synchronized with GRF(ground reaction force) data(1000Hz). Ten male soccer players performed a drop landing with single-leg and bi-legs on the 30cm height box. Dependent variables were the CoM trajectory and the Joint Moment. Statistical computations were performed using the paired t-test and ANOVA with Turkey HSD as post-hoc. Results : The dominant leg was confirmed to show a significant difference between the left leg and right leg as the inverted pendulum model during Drop Landing(Phase 1 & Phase 2). One-leg drop landing type had the higher CoM displacement, the peak of joint moment with the shock absorption than Bi-leg landing type. As a lower extremity joint kinetics analysis, the knee joint showed a function of shock absorption in the anterior-posterior, and the hip joint showed a function of the stability and shock absorption in the medial-lateral directions. Conclusion : These findings indicate that the instant equilibrium of posture balance(phase 1) was assessed by the passive phase as Class 1 leverage on the effect of the stability of shock absorption(phase 2) assessed by the active phase on the effect of Class 2 leverage. Application : This study shows that the cause of musculo-skeletal injuries estimated to be focused on the passive phase of landing and this findings could help the prevention of lower damage from loads involving landing related to the game of sports.