• 제목/요약/키워드: PORE

검색결과 5,575건 처리시간 0.033초

운영 중 터널에 작용하는 간극수압 평가기법 (Evaluation of pore water pressure on the lining during tunnel operation)

  • 신종호;신용석;최규철
    • 한국터널지하공간학회 논문집
    • /
    • 제10권4호
    • /
    • pp.361-369
    • /
    • 2008
  • 지중터널은 대부분 지하수위 하부에 위치하므로 지하수 처리문제는 터널의 장기운영에 있어 매우 중요하다. 배수형터널의 경우 수리기능이 원활하면 라이닝에 수압이 작용하지 않으나 장기 운영으로 인해 배수시스템의 열화가 진행되면서 라이닝 배면에 설계 시 고려하지 않았던 간극수압이 작용하게 되는데, 이를 잔류수압이라 한다. 잔류수압은 피에조미터로 그 측정이 가능하나 이는 라이닝 및 배수시스템을 훼손할 염려가 있어 부적합하기 때문에 라이닝을 손상시키지 않으면서 작용수압을 평가할 수 있고, 운영 중 라이닝의 건전도 평가(health monitoring) 시 수압상태의 파악이 가능한 비파피 예측기법이 요구된다. 본 논문에서는 이론적 및 수치해석적 방법을 사용하여 운영 중 터널에 작용하는 간극구압(잔류수압) 예측기법을 제시하였으며, 본 해석방법을 이용하면 비파괴 방법으로 라이닝에 작용하는 간극수압의 파악이 가능하다. 제안된 방법은 이론적 예측기법과 수치해석 결과인 정규화 간극수압 분포곡선과를 병용함으로써 터널 운영단계에서의 잔류수압에 대한 안정성 검토에 유용하게 활용될 수 있다.

  • PDF

도공층의 공극과 인쇄적성에 관한 연구(제4보) -안료 배합 비율이 미치는 영향- (Studies on the Pore of Coating Layer and Printability (IV) -Effects of Blending Ratio of Pigments-)

  • 김창근;이용규
    • 펄프종이기술
    • /
    • 제33권3호
    • /
    • pp.29-36
    • /
    • 2001
  • This paper was made to evaluate the effect of the blending ration of GCC and No. 1 clay on the printability by investigating the structure of pore such as the pore rate, the number of pores, pore size and distribution of coated paper. The coated structure is mainly depended on the results of correlation between pigment and binder. It means that the structure of the pore occurred is chiefly affected by the blending ratio of GCC and No. 1 clay. This physical properties of the pore have a close relation with ink set-off associated with the drying rate and the penetration in ink into base paper and with printing gloss. Therefore it was needed to find out how the pore structure and the printability will be changed by modifying the blending ratio of GCC and No. 1 clay to vary the pore structure of coated paper. Below are the results of measurement: As the blending ratio of clay going up, water retention, sedimentation volume. smoothness, and paper gloss were increased, but relatively brightness and opacity were decreased. Pore rate was the highest at the blending ratio of No. 1 clay to GCC, 70:30. In this case, average pore radius was also increased. Ink receptivity and K&N ink receptivity were improved with the increase of the blending ratio of GCC, where was, ink setting was vice versa. No difference was observed in the weight of ink, but ink repellance decrease with the decrease of blending ratio of GCC.

  • PDF

Nitrogen Porosimeter를 이용한 산소 플라즈마 처리 PET의 미세구조 분석 (The Analysis of the Micro-structure of Oxygen Plasma Treated PET Using a Nitrogen Porosimeter)

  • 김병인;김태경;조규민;임용진
    • 한국염색가공학회지
    • /
    • 제11권6호
    • /
    • pp.1-6
    • /
    • 1999
  • The porosities of PET fibers were investigated using a nitrogen porosimeter according to oxygen plasma treatment and dyeing with a disperse dye, and they were discussed in terms of the change of internal micro-structure of the PET fiber. The total pore volume, surface area and average pore size of the plasma treated PET fibers increased expectably compared with the untreated sample. The PET fibers treated with oxygen plasma and then dyed with a disperse dye were increased significantly in the surface area and the total pore volume comparing with those of plasma treated only, but decreased in the average pore size. The increase of the surface area, after dyeing, of the plasma treated PET fibers was due to addition of the surface area of the dye itself to that of the PET fiber. The increase of the total pore volume of the plasma treated PET fibers by dyeing, which is the opposite result to the general idea that the pore volume of fibers would be reduced by occupation of dye molecules in the pores, could be explained by the free-volume model. This is that the amorphous region in the fiber expanded by occupation of dye molecules, and the marginal space surrounding dyes was generated as many smaller pores, and the decrease of the average pore size of the dyed sample also could be explained The decrease of the average pore size was caused by the splitting of a larger pore into smaller pores.

  • PDF

Comparison of the Mercury Intrusion Porosimerty, Capillary Flow Porometry and Gas Permeability of Eleven Species of Korean Wood

  • Jang, Eun-Suk;Kang, Chun-Won;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권6호
    • /
    • pp.681-691
    • /
    • 2018
  • The typical methods of mercury intrusion porosimetry (MIP) and capillary flow porometry (CFP) were used to evaluate the pore size of cross-section of wood and the effect of the pore structure on the permeability of wood was analyzed in this study. The results of this study were as followings: The pore size of wood measured by CFP was larger than that measured by MIP except for Lime tree, Korean red pine and Paulownia. Among the three pore types of porous materials defined by IUPAC (through pores, blind pores, and closed pores), only through pores are related to permit fluid flow. MIP measures the pore size of both through pores and blind pores, while CFP measures the pore size of only constricted through pores. Therefore, pore size measured by MIP was not related to gas permeability, however pore size measured by CFP had a proportional relationship with gas permeability.

The effect of micro pore on the characteristics of crack tip plastic zone in concrete

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.107-127
    • /
    • 2016
  • Concrete is a heterogeneous material containing many weaknesses such as micro-cracks, pores and grain boundaries. The crack growth mechanism and failure behavior of concrete structures depend on the plastic deformation created by these weaknesses. In this article the non-linear finite element method is used to analyze the effect of presence of micro pore near a crack tip on both of the characteristics of crack tip plastic zone (its shape and size) and crack growth properties (such as crack growth length and crack initiation angle) under pure shear loading. The FE Code Franc2D/L is used to carry out these objectives. The effects of the crack-pore configurations and the spacing between micro pore and pre-excising crack tip on the characteristics of crack tip plastic zone and crack growth properties is highlighted. Based on the obtained results, the relative distance between the crack tip and the micro pore affects in very significant way the shape and the size of the crack tip plastic zone. Furthermore, crack growth length and crack initiation angle are mostly influenced by size and shape of plastic zone ahead of crack tip. Also the effects of pore decrease on the crack tip by variation of pore situation from linear to perpendicular configuration. The critical position for a micro pore is in front of the crack tip.

Pore Size Distribution and Chloride Diffusivity of Concrete Containing Ground Granulated Blast Furnace Slag

  • 문한영;김홍삼;최두선
    • 콘크리트학회논문집
    • /
    • 제16권2호
    • /
    • pp.277-282
    • /
    • 2004
  • In a hardened concrete, diffusion of oxygen, carbon dioxide, aggressive ions, and moisture from the environment to the concrete takes place through the pore network. It is well known that making dense cement matrix enhances the durability of concrete as well as all the characteristics including strength of concrete. In this paper,9 mix concretes with water to cementitious material ratio (40,45, and $50\%$) and replacement ratio of GGBFS (40 and $60\%$ of cement by weight) were studied on the micro-pore structure by mercury intrusion porosimetry and the accelerated chloride diffusion test by potential difference. From the results the average pore diameter and accelerated chloride diffusivity of concrete were ordered NPC > G4C > G6C. It is concluded that there is a good correlation between the average pore diameter and the chloride diffusivity, and the mineral admixtures has a filling effect, which increases the tortuosity of pore and makes large pores finer, on the pore structure of cement matrix due to the latent hydraulic reaction with hydrates of cement.

머신 러닝 회귀 방안을 이용한 인공지지체 기공 크기 예측모델 성능에 관한 연구 (A Study on Prediction Model Performance of Scaffold Pore Size Using Machine Learning Regression Method)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.36-41
    • /
    • 2020
  • In this paper, We need to change all print factors when which print scaffold with 400 ㎛ pore using FDM 3d printer. Therefore the print quantity is 10 billion times, So we are difficult to print on workplace. To solve the problem, we used the prediction model based machine learning regression. We preprocessed and learned the securing print condition data, and we produced different kinds of prediction models. We predicted the pore size of scaffolds not securing with new print condition data using prediction models. We have derived the print conditions that satisfy the pore size of 400 ㎛ among the predicted print conditions of pore size. We printed the scaffolds 5 times on the condition. We measured the pore size of the printed scaffold and compared the average pore size with the predicted pore size. We confirmed that error was less than 1%, and we were identify the model with the highest pore size prediction performance of scaffold.

국산 카올린의 흡착성에 관한 연구(II) - 분체학적 고찰 (Studies on the Adsorptive Properties of Korean Kaolin (II) - Micromeritic Study of Korean Kaolin)

  • 이계주
    • 약학회지
    • /
    • 제29권4호
    • /
    • pp.176-182
    • /
    • 1985
  • As a part of the studies on adsorptive properties of Korean halloysite clays, Hadong white clays of premium grade were examined for geometric pore structured by mercury porosimetry and for specific surface areas by nitrogen adsorption according to the BET procedure. Three size fractions of the native clay sample were derived from passage BS #100, #200 and #325 meshes, respectively. Several parameters lhus observed in relation to the pore structures are shown below: 1. The size fraction of BS #100, #200 and #325 show internal pore volumes of 25.3, 30.2 and $35.0m^2g^{-1}$, respectively. 2. In the distribution curves of the cumulative pore volume against pore diameter, it has been shown that the larticle sizes, the steeper the distribution over the larger ranges of pore diameters. The converse is true the smaller particles. 3. Internal pore areas increase with decrease in pore sizes. It follows that the pores having diameters of $\leq$0.1$\mu\textrm{m}$ are responsible for more than 90% of the total pore area. 4. The behaviour of nitrogen adsorption can be best described by BET type IV isotherm. Further, the hysteresis loops of the adsorptiondesorption curves become narrower with decresing particle sizes. 5. The specific surface areas observed for the fractions of BS #100, BS #200 and BS #325 are 34.6, 35.4 and 43.2m $^2g^{-1}$, respectively. and the calcined clay of BS #325 has a specific surface area near $30.4m^2g^{-1}$.

  • PDF

Effects of the Pore Size of Graphite on the Mechanical Properties and Permeability of a Porous Nozzle for Continuous Casting Process

  • Cho, Yong-Ho;Kim, Juyoung;Yoon, Sanghyeon;Lee, Heesoo
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.530-534
    • /
    • 2011
  • To analyze the effect of the pore size of graphite in a pore-forming agent, graphite was added to porous ceramics of $Al_2O_3-SiO_2-ZrO_2$ systems. The graphite had 45~75, 100~125, 150~180, and 75~180${\mu}m$ dimensions. The properties of the ceramics, such as apparent porosity, density, dynamic elastic modulus, mechanical strength, and permeability, were investigated. The average pore size increased from 15.35${\mu}m$ to 22.32${\mu}m$ with the increase of the graphite size. The sample with the largest average pore size showed the highest mechanical strength and gas permeability. This was due to the sample with the largest pore size at the same porosity having fewer pores and larger distance between the pores than the sample with the smallest pore size, making cracks less likely to propagate. In addition, the large pore size reduced the repulsive power originating from the drag force between the gas and internal pore walls.

Microstructure and Pore Characteristics of a SUS316L Gas Filter Fabricated by Wet Powder Spraying

  • Min-Jeong Lee;Yu-Jeong Yi;Hyeon-Ju Kim;Manho Park;Jungwoo Lee;Jung-Yeul Yun
    • Archives of Metallurgy and Materials
    • /
    • 제67권4호
    • /
    • pp.1547-1550
    • /
    • 2022
  • In this study, a flake-shaped metal powder was coated on a tube shaped pre-sintered 316L stainless steel support using a wet powder spraying process to fabricate a double pore structure, and the pore characteristics were analyzed according to coating time and tube rotation speed. The thickness of the coated layer was checked via optical microscopy, and porosity was measured using image analysis software. Air permeability was measured using a capillary flow porometer. As a result of the experiment, the optimal rotation speed of the support tube was established as 200 rpm. When the rotation speed was fixed, the coating thickness and the coating amount of the double pore structure increased as the coating time increased. The porosity of the double pore structure was increased due to the irregular arrangement of the flake-shaped powder. The air permeability of the double pore structure decreased with increasing fine pore layer thickness.