• Title/Summary/Keyword: PNPG1

Search Result 12, Processing Time 0.018 seconds

Characterization of $\beta$-1,4-D-Glucan Glucanohydrolase Purified from Trichoderma koningii (Trichoderma koningii에서 분리한 $\beta$-1,4-D-glucan glucanohydrolase의 특성)

  • 임대식;정춘수;강사욱;하영칠
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.85-91
    • /
    • 1991
  • .betha.-1,4-D-Glucan glucanohydrolase(EC 3.2.1.4;F-II-IV) purified from Trichoderma koningii was identified as a glycoprotein containing 9% carbohydrate. Isoelectric point of the enzyme was estimated to be 4.9 and molecular weight was determined to be approximately 58,000. The porducts of p-nitrophenyl-cellobioside ($PNPG_{2}$) catalyzed by the enzyme were p-nitrophenol(PNP) and p-nitrophenyl-glucoside($PNPG_{1}$). The Km value for $PNPG_{2}$ was estimated to be 0.97 mM in case of the holoside lindage and 10.4 mM in case of the aglycon linkage and their kcat values were $1.8*10^{5}$$ min^{-1}$ and $7.5*10^{5}$ $min^{-1}$ respectively. The product of p-nitrophenyl cellotriose($PNPG_{3}$) was only $PNPG_{1}$. The Km value for $PNPG_{3}$ was 69.5 .$\mu$M and kcat was $1*10^{8}$ $min^{-1}$ which implicates that the enzyme have higher affinity and higher hydrolysis rate toward $PNPG_{3}$ than toward $PNPG_{2}$. The enzyme showed its optimal activity at pH 4.0-4.5 and at 60.deg.C. The effect of gluconolactone on the activity toward $PNPG_{2}$ showed competitive inhibition pattern but glucose and cellobiose did not. The enzyme contained a high content of acidic and hydroxylated amino acids in contrast to basic amino acids.

  • PDF

Characteristics of Cellulomonas fimi $\beta$-glucosidase expressed in Escherichia coli (대장균에서 발현되는 Cellulomonas fimi $\beta$-glucosidase의 효소학적 특징)

  • Kim, Ha-Kun
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.57-61
    • /
    • 1996
  • The $\beta$-glucosidase enzyme was purified from E. coli carrying Cellulomonas fimi $\beta$-glucosidase gene. SDS-PAGE and analytical gel filtration revealed that molecular weight of this enzyme was 56,000 dalton and consisted of a single polypeptide.Inhibition caused by heavy metals and activation by dithiothreitol suggest the existence of essential thiol group in the enzyme. The enzyme was not active on maltose (glucose $\alpha$-1,4-glucose) which has a $\alpha$-linkage, whereas it was active on lactose (glucose $\beta$-1,4-glucose), PNPG (p-nitrophenyl $\beta$-D-glucopyranoside) and PNPC (p-nitrophenyl $\beta$-D-cellobioside), although its reaction rates were different.

  • PDF

Aspergillus niger SFN-416으로부터 생산한 $\beta$-Glucosidase의 정제 및 특성

  • Sung, Chan-Ki;Lee, Sang-Won;Park, Seok-Kyu;Park, Jeong-Ro;Moon, Il-Shik
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.44-50
    • /
    • 1997
  • $\beta $-Glucosidase (EC 3.2.1.21) was purified from Aspergillus niger SFN-416 by a sequential process of ammonium sulfate precipitation, Sepadex G-100 and DEAE-Sephacel column chromatography. Molecular weight of the enzyme was 46, 000 daltons. The K$_{m}$ and V$_{max}$ values for PNPG were 0.67 mM and 25 moles/ml $\cdot $min., respectively. The optimum pH and temperature of the enzyme activity were 3.5 and 58$\circ $C, respectively. The enzyme activity was decreased by addition of metal ions, and increased by addition of metanol, ethanol, isopropanol and 1-butanol at a concentration of 10% (v/v). Stability of the enzyme was increased by addition of isopropanol and 1-butanol at a concentration of 10% (v/v).

  • PDF

Inhibition Mechanism of $\alpha$-D-Glucosidase Inhibitor from Streptomyces sp (Streptomyces속 균주가 생성하는 $\alpha$-D-Glucosidase 저해물질의 작용상)

  • 도재호;주현규
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.39-43
    • /
    • 1990
  • The inhibitor had the inhibitory activities against hydrolysis of PNPG, sucrose and ONPG by $\alpha$-Dglucosidase, $\alpha$ - and $\beta$ -galactosidase, but it did not inhibit amylases and other carbohydrases. Kinetic studies exhibited that the inhibitory substance non-competitively inhibited the enzyme reaction with a Ki value of 118 $\mu$g/m$\ell$, and enzyme-inhibitor complex was formed slowly.

  • PDF

Characterization of Endoglucanase (F-I-III) Purified from Trichoderma sp. C-4 (새로운 섬유소분해 균주 Trichoderma sp. C-4에서 분리한 Endoglucanase (F-I-III)에 대한 연구)

  • Sul Ok Ju;Chung Dae Kyun;Han In Seob;Jeong Choon Soo
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • One of the endoglucanases, F-I-III, was purified from the culture filtrate of T. sp. C-4 through procedures including chromatography on Sephacryl S-200, DEAE-Sepharose A-50, and Chromatofocusing on Mono-P (FPLC). The molecular weight of the enzyme was determined to be about 56,000 Da by SDS-PAGE, and pI of 4.9 by analytical isoelectric focusing. F-I-III showed the highest enzyme activity at $55^{\circ}C$, and the pH optimum of the enzyme was 5.0. There was no loss of activity when the enzyme was incubated at $50^{\circ}C$ for 24 hours. The specific activity of the enzyme F-I-III toward the CMC was 315.4 U/mg. The Km value for $PNPG_2$ of F-I-III was 2.69 mM. N-terminal sequence of F-I-III was analyzed to be QPGTSTPEVHPKKLTTYK. It showed $95\%$ of homology to that of EGI from T. reesei. The presence of some metal ions (1 mM) had only a little effect on CMCase activity. The treatment of the reducing agents resulted in the increase of endoglucanase activity.

Purification and Characterization of $\beta$-Galactosidase from Sea Urchin, Hemicentrotus pulcherrimus (성게로부터 분리한 $\beta$-galactosidase의 정제 및 특성)

  • KIM Gyu-Hyung;KIM Yong-Tae;KIM Se-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.637-644
    • /
    • 1998
  • [ $\beta$ ]-Galactosidase was extracted from the internal organ of sea urchin, Hemicentrotus pulcherrimus The enzyme was purified 384.6-fold over the crude extract by the sequential chromatographic methods including DEAE-Sephadex A-25, CM-Cellulose, and Con A-Sepharose 4B affinity chromatography with a recovery $1.26\%$. The molecular weight of the purified enzyme was estimated approximately 94 kDa as monomeric term by SDS-PAGE and Sephadex G-150 gel chromatography. The maximum enzymatic activity was observed at pH 3.0 and $50^{\circ}C$ but the one was stable over the ph range or 3.0$\~$5.0 and below $37^{\circ}C$. The $K_m$ and $V_{max}$ values against PNPG (P-nitrophenyl $\beta$-D-galactopyranoside) were 15.0 mM and 214 $\mu$mole/min per mg protein, respectively. The enzymatic activity was activated by $Ba^{2+}$, but significantly inhibited by $DEP,\;Hg^{2+},\;Sn^{2+}$ and galactose.

  • PDF

The Importance of Tyr-475 and Glu-506 in $\beta$-Galactosidase from L. lactis ssp.lactis 7962

  • Yang, Eun-Ju;Lee, Jung-Min;Lee, Hyong-Joo;Kim, Jeong-Hwan;Chung, Dae-Kyun;Lee, Jong-Hoon;Chang, Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.134-138
    • /
    • 2003
  • The secondary and tertiary structures of ${\beta}$-galactosidase from L. lactis ssp. lactis 7962 were designed using Nnpredict and Sybyl version 6.3. By using site-directed mutagenesis, the mutated enzymes, Tyr-475-phe and Glu-506-Asp, were generated based on the structural modeling of L. lactis ssp. lactis 7962. The enzymes Tyr.-475-Phe and Glu-506-Asp had <$1\%$ of the activity of the native enzyme with ONPG as substrate. The $V_{max}$ values of the mutated enzymes were greatly reduced (1,800~40,000-1314) compared with the value for the native ${\beta}$-galactosidase. However, the $K_m$ values of Tyr-475-Phe and Glu-506-Asp with ONPG, PNPG, PNPF, and PNPA were not significantly different from those of the native enzyme. The results obtained support the suggestion that Tyr-475 and Glu-506 constitute very important parts of the catalytic machinery of the ${\beta}$-galactosidase.

Purification and properties of soybean ${\alpha}-galactosidase$ (대두 ${\alpha}-galactosidase$의 정제 및 성질)

  • Keum, Jong-Hwa;Oh, Man-Jin;Kim, Seong-Yeol
    • Applied Biological Chemistry
    • /
    • v.34 no.3
    • /
    • pp.249-257
    • /
    • 1991
  • To elucidate enzymatic properties of ${\alpha}-galactosidase$ (EC 3, 2, 1, 22) from germinated soybean, changes in the enzyme activities and oligosaccharide contents during germination of soybean were determined. ${\alpha}-Galactosidase$ from germinated soybean was purified by ammonium sulfate fractionation, ion exchange chromatography and gel filtration. Their chemical and enzymatic properties was investigated. ${\alpha}-galactosidase$ activity of sobeam was maximized when it was germinated at $25^{\circ}C$ for 120 hour. Raffinose and stachyose in soybean were decomposed completely after 96 hours and 120 hours of germination, respectively. Soybean ${\alpha}-galactosidase$ was purified by 6.6 fold by ammonium sulfate fractionation, ion exchange chromatography on DEAE-Cellulose and Sephadex A-50, and gel filtration on Sephadex G-150. Its specific activity was 825 Units/mg protein and the yield was 2.5% of the total activity of crude extracts. The purified ${\alpha}-galactosidase$ of soybean was found to be homogeneous by polyacrylamide gel electrophoresis and by HPLC. Isoelectric point of soybean ${\alpha}-galactosidase$ was determined analytical isoelectric focusing to be pH 4.8. The soybean ${\alpha}-galactosidase$ was monomeric and its molecular weight was estimated to be 30,000 by SDS-PAGE. The optimal temperature and pH for the soybeam ${\alpha}-galactosidase$ activity were $40^{\circ}C$ and pH 6.0 and 75% of its activity was lost by heating at $60^{\circ}C$ for 10 min. The enzyme was appeared to have higher affinity to raffinose than to stachyose. The Km value of soybean enzyme was 5.3 mM for ${\rho}-nitrophenyl-{\alpha}-D-galactopyranoside$ and the activation energy on PNPG was calculated to be 13.02 Kcal per mole.

  • PDF

Characterization of ${\alpha}$-Galactosidase and ${\beta}$-Glucosidase by Weissella cibaria (Weissella cibaria가 생산하는${\alpha}$-Galactosidase 및 ${\beta}$-Glucosidase의 특성)

  • Hong, Sung-Wook;You, Lae-Kyun;Jung, Byung-Moon;Kim, Wan-Sik;Chung, Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.204-212
    • /
    • 2009
  • A strain producing ${\alpha}$-galactosidase and ${\beta}$-glucosidase was isolated from Kimchi. The isolated strain was identified as Weissella cibaria by 16S rDNA analysis and designated as Weissella cibaria K-M1-4. The enzyme activity of ${\alpha}$-galactosidase and ${\beta}$-glucosidase reached the maximum in the soy medium at $37^{\circ}C$ for 24 hr. The enzymes were purified by ethanol fractionation, DEAE sepharose fast flow, and sephacryl S-100HR column chromatography. ${\alpha}$-Galactosidase specific activity was shown by 576 Units/mg protein and the yield was 3.5% of the total activity of crude extracts. ${\beta}$-glucosidase specific activity was shown by 480 Units/mg protein and the yield was 2.9% of the total activity of crude extracts. The optimum temperature for ${\alpha}$-galactosidase was $60^{\circ}C$ and 43% of its original activity remained when it was treated at $80^{\circ}C$ for 30 min. For ${\alpha}$-galactosidase shows the optimum pH of 8.0 and is fairly stable between pH5.0 and pH9.0. The enzyme activity was increased in the presence of $Fe^{2+}$ and $Cu^{2+}$. The value of Km and Vmax for the enzyme were 0.98 mM and $1.81{\mu}$mole/min, respectively. The ${\beta}$-glucosidase has the optimum temperature of $50^{\circ}C$ and 46% of its original activity remained when it was treated at $80^{\circ}C$ for 30min. Its optimum pH of 7.0 and is fairly stable between pH5.0 and pH9.0. The enzyme activity was increased in the presence of $Fe^{2+},\;Co^{2+}$ and $Cu^{2+}$. The value of Km and Vmax for the enzyme were 1.24 mM and $6.81{\mu}$mole/min, respectively.

Kinetic Properties of $\alpha$-Galactosidase from Aspergillus niger ATCC 16513 and Soybean(Glycine max. L) (Aspergillus niger ATCC 16513과 대두(Glycine max. L) $\alpha$-galactosidase의 kinetic 성질)

  • Geum, Jong-Hwa;Lee, Jong-Su;Sin, Cheol-Seung
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.53-57
    • /
    • 1992
  • This experiment was carried out to elucidate some kinetic properties of the $\alpha$-galactosidase which produced and purified from Aspergillus niger ATCC 16513 and soybean(Glycine max. L). The Km value of Asp. niger and soybean $\alpha$-galactosidase were 37.0mM and 50.0mM for raffinose and55.5mM and 55.5mM for stachyose, respectively. The activity of Asp. niger and soybean $\alpha$-galactosidase were inhibited by galactose. Among the amino acids in active sites of both Asp. niger and soybean $\alpha$-galactosidase, histidine was identified by chemical modification of diethyl pyrocarbonate. Number of amino acids residues per mole of Asp. niger and soybean $\alpha$-galactosidase were 902 and 286, respectively.

  • PDF