Characterization of β -1,4-D-Glucan Glucanohydrolase Purified from *Trichoderma koningii* Lim, Dae-Sik, Choon-Soo Jeong, Sa-Ouk Kang and Yung Chil Hah Department of Microbiology, College of Natural Sciences. Seoul National University, Seoul 151-742, Korea # Trichoderma koningii에서 분리한 β-1,4-D-Glucan Glucanohydrolase의 특성 임대식 · 정춘수 · 강사욱 · 하영칠 서울대학교 자연과학대학 미생물학과 ABSTRACT: β -1,4-D-Glucan glucanohydrolase(EC 3.2.1.4;F-II-IV) purified from *Trichoderma koningii* was identified as a glycoprotein containing 9% carbohydrate. Isoelectric point of the enzyme was estimated to be 4.9 and molecular weight was determined to be approximately 58, 000. The porducts of *p*-nitrophenyl-cellobioside (PNPG₂) catalyzed by the enzyme were *p*-nitrophenol(PNP) and *p*-nitrophenyl-glucoside(PNPG₁). The Km value for PNPG₂ was estimated to be 0.97 mM in case of the holoside linkage and 10.4 mM in case of the aglycon linkage and their kcat values were 1.8×10^5 min⁻¹ and 7.5×10^5 min⁻¹, respectively. The product of *p*-nitrophenyl cellotriose(PNPG₃) was only PNPG₁. The Km value for PNPG₃ was 69.5 μ M and kcat was 1×10^8 min⁻¹, which implicates that the enzyme have higher affinity and higher hydrolysis rate toward PNPG₃ than toward PNPG₂. The enzyme showed its optimal activity at pH 4.0-4.5 and at 60°C. The effect of gluconolactone on the activity toward PNPG₂ showed competitive inhibition pattern but glucose and cellobiose did not. The enzyme contained a high content of acidic and hydroxylated amino acids in contrast to basic amino acids. Key Words $\square \beta$ -1,4-D-Glucan Glucanohydrolase, PNP derivatives (PNP, PNPG₁, PNPG₂, PNPG₃). The cellulase system of fungi consists of β -1,4-D-glucan glucanohydrolase (endo β -1,4-glucanase, C_x , EC 3.2.1.4), β -1,4-D-glucan cellobiohydrolase (exo- β -1,4-D-glucanase, C_x , EC 3.2.1.91) and β -glucosidase (β -glucoside glucohydrolase, cellobiase, EC 3.2.1.21). Endoglucanases attack internal glycosidic bonds of cellulose chains at random, thereby producing polymer chain ends and soluble oligosaccharides. Exoglucanases cleave cellobiosyl residue from the ends of cellulose chains and oligosaccharides. β -Glucosidases catalyze hydrolysis of cellobiose and oligosaccarides to glucose(Reese et al., 1950). Having difficulties in quantitation of the products liberated from substrates(Carboxymethylcellulose(CMC), Avicel, cello-oligosaccharides), kinetic studies of endo- and exoglucanase have been limited. Recently, there has been reported the use of chromophoric disaccharide derivatives and a homologous series of 4-methylumbelliferyl glucosides of cello-oligosaccharides (MeUmb-(Glc)ⁿ⁼²⁻⁶⁾ in the studies of cellulase from *Trichoderma reesei* (Tileurgh and Pettesson, 1985). Chirico and Brown (1987) studied β -glucosidase from *Trichoderma* reesei with [1-3H]cello-oligosaccharides. In *Trichoderma koningii*, two exo-, four endoglucanases and two β -glucosidases have been purified and characterized(Wood, 1968; Wood and MaCrae, 1972; 1978) but accurate kinetic parameters were not available except β -glucosidase. In the present report, we purify and characterize the β -1,4-endoglucanase (F-II-IV) from *Trichoderma koningii* with PNP-derivatives (p-nitrophenyl oligosaccharides). # MATERIALS AND METHOD #### Fungal strains and chemicals Strain used was *Trichoderma koningii* ATCC 26 113 and cultured as described by Hong *et al.* (1986). All chemicals used were purchased from Sigma Chemical Co. #### Enzyme assay Activity toward CMC The enzyme activity of column eluent was measured according to the method previously described by Hong et al. (1986). Activity toward PNP derivatives Assay with spectrophotometer The activity of purified enzyme toward p-nitrophenyl cellobioside (PNPG₂) was assayed by measuring the amount of p-nitrophenol(PNP) liberated from the PNPG₂. The reaction mixture was composed of 40 μ l of 2 mM PNPG₂ solution in 0.1 M acetate buffer pH 5.0 and 10 μ l of enzyme solution. After incubation at 40 $^{\circ}$ C for 5 min, 100 μ l of 1 M sodium carbonate solution was added to the mixture. The mixture was then diluted with 500 μ l of distilled water and the absorbance at 420 nm was measured. One unit of enzyme activity was defined as the amount of enzyme per producing 1 μ mol min⁻¹ of PNP under the standard condition of the assay. # Assay with HPLC After the reaction mixture was incubated at the same condition described above, samples were withdrawn and analyzed with HPLC system (Model 600 A, Waters Associates Co.) and Partisil PXS 10/25 column. The eluent was 22%(v/v) water in acetonitrile at the flow rate of 1.0 ml min⁻¹. The PNP derivatives were detected by Waters Model 440 absorbance detector at 254 nm. One unit of enzyme activity was defined as the amount of enzyme per producing 1 µ mol min⁻¹ of PNP, PNPG₁ under the standard condition of the assay. Biosynthesis of the PNP derivatives and purification The reaction mixture was composed of 20 mM PNPG and purified 0.5 μ M low molecular weight endoglucanase(F-IV-I; Hong et al., 1986). After incubation at 40 °C for 60 min, the enzyme was filtered off with Centricon and the reaction products were analyzed and purified with HPLC system(Model 600 A, Waters Associates Co.) and μ -Porasil column. The sample was eluted with linear gradient of 10 %(v/v) methanol in chloroform and 2 %(v/v) water in methanol. The flow rate 1.0 ml min⁻¹. # Determination of protein concentration Protein concentration was determined by method of Lowry et al., (1951) and Bradfford (1976), with bovine serum albumin(Sigma) as standard. #### **Enzyme purification** The crude enzyme preparation was fractionated by gel filtration on Bio-Gel P-150 100-200 mesh (Bio-Rad Laboratories, Richmond, CA, USA) as described by Hong et al. (1986). The endoglucanase fraction(F-II, 150 ml) from the Bio-Gel P-150 column was concentrated ten-fold by ultrafiltration through a Diaflo membrane, type PM 10(Amicon, Lexington, MA. USA). The ultrafiltrate was diluted fifty-fold with 0.02 M phosphate buffer, pH 6.9 and concentrated again. Further fractionation of enzyme from the concentrated solution was performed on a DEAE-Sephadex A-50(2.2×50 cm) column equilibrated with 0.02 M phosphate buffer, pH 6.9. The column was eluted with 300 ml of the same buffer, thereafter a linear NaCl concentration gradient(0-0.5 M) was applied at the flow rate of 20 ml hour⁻¹. The fraction volume was 4 ml. The endoglucanase fraction(F-II-IV, 120 ml) was concentrated to 15 ml by ultrafiltration. The buffer of the enzyme solution was exchanged for 0.025 M histidine-HCl buffer, pH 5.5 by repeated dilution and ultrafiltration. The concentrated solution was loaded on Polybuffer exchanger PBE 94(Pharmacia Co.) chromatofocusing column(0.9×35 cm) equilibrated with 0.025 M histidine-HCl buffer, pH 5.5. The column was eluted with 250 ml of ten-fold diluted Polybuffer 74(Pharmacia Fine Chemicals)-HCl buffer, pH 3.5. The flow rate was 9 ml hr⁻¹ and the fraction volume was 2 ml. #### Determination of carbohydrate in enzyme The content of carbohydrate in the purified enzyme was analyzed quantitatively by the method of Dubois *et al.* (1956), using 5% phenol solution and sulfuric acid. # SDS-linear polyacrylamide gradient gel electrophoresis The SDS-linear polyacrylamide gradient gel electrophoresis was performed by the modified method of Lambin, (1978). After electrophoresis, the fixation and staining and destaining were performed by the method of Neuhoff *et al.* (1988). **Analytical isoelectric focusing** Analytical isoelectric focusing was performed on a T=5%, C=3% gel slap containing 6.25% Pharmalyte(Pharmacia) in the pH range 4-6.5, as described by Hong *et al.* (1986). #### Amino acid composition The amino acid composition was determined by the method of Bidlingmeyer et al. (1984). About 15 µg of enzyme were hydrolyzed with 6 N HCl at 105 °C for 24 hr in sealed evacuated tubes. The hydrolysate was dried with redrying agent(Waters Associate Co.) and derivatized with phenylisothiocynate(PITC) at room temperature for 20 min. The derivatized amino acids were analyzed with HPLC system and a Pico-Tag column(Waters Associate Co.). The samples were eluted with linear gradient of solvent A (2% sodium acetate, 0.05% triethylamine, and 6% acetonitrile) and solvent B(60% acetonitrle). The flow rate was 1.0 ml min⁻¹. # **RESULT AND DISCUSSION** #### Enzyme purification and purity The endoglucanase fraction(F-II, III) was effectively separated from other components by gel filtration chromatography on Bio-Gel P-150 column as described Hong et al. (1986). Further purification of F-II was achieved by ion exchange chromatography on the DEAE-Sephadex A-50 column. As shown in Fig. 1, the endoglucanase Fig. 1. Ion exchange chromatograph of F-II on DEAE-Sephadex A-50. Column dimension: 2.5×50 cm. Fraction volume: 4 ml. Observed values: ▲, protein; ○, endoglucanase activity. Fig. 2. Chromatofocusing of F-II-IV on polybuffer exchanger PBE 94. Column dimension: 0.9×35 cm Fraction volume 2 ml. Observed values: ▲, protein; ○, endoglucanase activity. fraction(F-II-IV) was separated from other protein fraction. Fig. 2 shows the result of chromatofocusing of F-II-IV-I fraction on the polybuffer exchanger PBE 94 column. The purity of the Fig. 3. Analytical isoelectric focusing of F-II-IV using Pharmalyte (pH 4-6.5). T=5%; C=3%. Fig. 4. Molecular weight estimation of F-II-IV by SDS-linear polyacrylamide gradient gel electro-phoresis. T=5-20% C=2.7%. Molecular weight markers; 1, α-2 macroglobulin(170,000); 2, markers; 1, α -2 macroglobulin(170,000); 2, phosphorylase(97,000); 3, glutamate dehydrogenase(55.400); 4, lactate dehydrogenase(36, 500); 5, trypsin inhibitor(20,100). Fig. 5. Molecular weight estimation of F-II-IV by SDSlinear polyacrylamide gradient gel electrophoresis. T=5-20% C=2.7%. Molecular weight markers; 1, α -2 macroglobulin(170,000); 2, phosphorylase(97,000); 3, glutamate dehydrogenase(55,400); 4, lactate dehydrogenase (36, 500); 5, trypsin inhibitor(20,100). Fig. 6. Effect of temperature on the activity of F-II-IV. enzyme was detected by electrophoretic method. Isoelectric focusing and SDS-linear polyacrylamide gradient gel electrophoresis showed a single band(Fig. 3, 4), which indicates the hommogeneity of the enzyme. # Isoelectric point and Molecular weight The isoelectric point of the enzyme was determined to be 4.9 by analytical isoelectric focusing (Fig. 3). This value is a slightly higher than Fig. 7. Effect of pH on the activity of F-II-IV. △, 25 mM citrate buffer; ○, 25 mM acetate buffer; ●, 25 mM phosphate buffer. that of F-IV-I(4.8) from the same strain estimated by Hong et al. (1986). The molecular weight of the purified enzyme was estimated by SDS-linear polyacrylamide gradient gel electrophoresis with standard proteins(Fig. 4). A linear relationship was obtained when the relative acrylamide concentration(T %) located in the standard proteins was plotted against the logarithmic values of the molecular weight. The molecular weight of the enzyme was estimated to be about 58,000(Fig. 5). # The carbohydrate content The carbohydrate content of the enzymes was estimated to be about 9% of molecular weight, using glucose as a standard carbohydrate. # Effect of temperature and pH on the enzyme activity The reaction mixture was incubated at various temperature and enzyme activity toward PNPG₂ was assayed with spectrophotometer. As shown in Fig. 6, the optimum temperature for the enzyme activity was 60 °C. The Arrheius plot indicates an activation energy of 5.84 kcal mol 1 from 23 to 45 °C and 5.8 kcal mol⁻¹ from 45 to 65 °C. Ea₁ value is almost the same as that of low molecular weight endoglucanase from same strain(F-IV-I; Hong et al. 1986) but Ea₂ value is lower than that of F-IV-I(12.1 kcal mol⁻¹). The dependence of enzyme activity on pH was investigated by measuring the PNP formed at various pH values. The reaction mixture was incubated at 40°C for 5 min. As shown in Fig. 7. the optimum pH for the enzyme activity wa 4.0-4.5. Kinetic study PNP derivatives(PNPG_{1,2,3,4}) formed from PNPG and cellotetraose with the purified low molecular Fig. 8. Separation of PNP-derivatives using HPLC. A; Separation of reaction products using Partisil 10 PAC column. Mobile phase; acetonitrile/water (78:22). Flow rate; 1.0 ml/min. Reaction mixture; PNPG (30 mM)+ cellotetraose (20 mM)+ F-IV-I(4×10⁻⁴ mM). B: Separation of reaction products using μ-Porasil column. Initial condition, chroloform/methanol (90:10); eluent, methanol/water (98: 2). 1, PNP; 2, PNPG₁; 3, PNPG₂; 4, PNPG₃; 5 PNPG₄. weight endoglucanase(F-IV-I; Hong et al., 1986) were separated and purified(Fig. 8). The reaction products liberated from PNPG₂ by the enzyme were PNP and PNPG₁(Fig. 9). This enzyme hydrolyzes the holoside as well as the aglycon linkage of PNPG2. These reaction products are same as that by endoglucanase from Irpex lasteus (Nisizawa, 1973). The reaction product by the enzyme toward PNPG3 was only PNPG1(Fig. 10). The Km and V_{max} values of the enzyme were determined by using Lineweaver-Burk plot(not shown) and listed in Table 1. Km values for the holoside linkage and the aglycan linkage of PNPG. were 0.97 and 10.1 mM, kcat were 1.8×10^5 and 7.5×10^{5} min⁻¹, respectively. These result showed that the enzyme had higher affinity toward holoside linkage than aglycon linkage but hydrolyzed PNPG₂ preferentially at the aglycon Fig. 9. Analysis of reaction products from enzymatic hydrolysis of PNPG₂ using HPLC. A; substrate (PNPG₂), B; enzymatic PNPG₂ hydrolysis products, 1, PNP; 2, PNPG₁; 3, PNPG₂. linkage. The Km value for PNPG3 was 69.5 µM and kcat was 1×10^8 min⁻¹. Comparing the Km value and keat for substrates, it appears that this enzyme have higher affinity and higher turnover number toward PNPG3 than toward PNPG2. From the results mentioned above, it is thought that the higher enzymatic activity toward PNPG₃ than PNPG₂ comes from the addition of glucosyl moiety to PNPG₂, through higher binding feasibility. Considering the results that the only product(PNPG1) was liberated from PNPG3 and two products(PNP, PNPG1) from PNPG2, this enzyme is thought to have each binding site that recognize at least cellobiosyl moiety. This supposition is supported by additional result that the activity toward PNPG2 was increased in the presence of cellobiose and dependent on its concentration(1-10 mM: not shown). In conclusive remark, these results could mean that there are at least three glucosyl binding site on one side of the catalytic site and three on the other similar to lysozyme. When the effect of the gluconolactone on the activity of the enzyme toward PNPG₂ was Fig. 10. Analysis of reaction products from enzymatic hydrolysis of PNPG₃ using HPLC. A; substrate (PNPG₃), B; enzymatic PNPG₃ hydrolysis products, 2, PNPG₁; 4, PNPG₃. Table 1. Km and kcat of F-II-IV on PNPG₂ PNPG₃ | Substrate | Product | Km | kcat | |-------------------|----------|----------|----------------------| | | | | (min ⁻¹) | | $PNPG_2$ | PNP | 0.97 mM | 1.8×10 ⁵ | | | $PNPG_1$ | 10.10 mM | 7.5×10^{5} | | PNPG ₃ | $PNPG_1$ | 49.50 μM | 1.0×10^{8} | investigated, the gluconolactone was proved to competitive inhibitior. This inhibition constant for gluconolactone was estimated to be about 11.6 μ M by using Lineweaver-Burk plot(not shown). But glucose and cellobiose did not show inhibition. # Amino acid composition The result of the amino acid analysis of the enzyme is summarized in Table 2. The enzyme had a high content of acidic and hydroxylated amino acids in contrast to low content of basic amino acids. The fact is consistent with the Fig. 11. Determination of Ki value of gluconolactone. Table 2. Amino acid composition of F-II-IV. | | F-II-VI | |------------|------------------| | Amino acid | residue per | | | molecular (mol%) | | Asp+Asn | 65 (13.5) | | Glu+Gln | 39 (8.1) | | Ser | 64 (13.4) | | Gly | 65 (13.5) | | His | 7 (1.5) | | Arg | 11 (2.3) | | Thr | 48 (10.0) | | Ala | 31 (6.4) | | Pro | 48 (10.0) | | Tyr | 28 (5.8) | | Val | 17 (4.5) | | Met | 9 (1.5) | | Cys | 5 (1.0) | | Ile | 9 (1.9) | | Leu | 25 (5.2) | | Phe | 9 (1.9) | | Lys | 10 (2.1) | | Тгр | n.d. | | Total | 481 (100) | The values are based on a molecular weight of 52,000 assuming that only analyzed amino acids are present. isoelectric point and water soluble property of the enzyme. When amino acid composition was expressed in mol percent of constituent amino acids, this enzyme is very similar to endoglucanases(EGI, EGII) from *Trichoderma reesei* and exoglucanase(F-II-V) from *Trichoderma koningii*. #### 적 요 Trichoderma koningii에서 순수 분리된 β-1,4-D-glucan glucanohydrolase (EC 3.2.1.4; endoglucanase; F-II-IV)는 9%의 단수화물 포함한 당단백질로 분자량은 58,000이고 등전점은 4.9이였다. 기질 p-nitrophenyl cellobioside(PNPG₂)의 분해 산물은 p-nitrophenol(PNP)와 p-nitrophenyl glucoside(PNPG₁)으로, 각 분해산물(holoside, aglycon linkage)에 대한 Km 값은 0.97과 10.4 mM이고 kcat 값은 1.8×10^{5} min $^{-1}$ 와 7.5×10^{5} min $^{-1}$ 로 나타났다. p-Nitrophenyl cellotraose(PNPG $_{3}$)을 기질로 사용하였을 경우 PNPG $_{1}$ 만이 생성되고 Km 값이 $69.5~\mu$ M, kcat 값은 1×10^{5} min $^{-1}$ 으로 측정된 점으로 보아이 효소는 PNPG $_{2}$ 보다 PNPG $_{3}$ 에 대한 기질 친화도가 훨씬 높고 잘 분해하는 것으로 생각된다. 이 효소의 최적 반응 온도는약 60° 이고 최적 $_{1}$ PH는 4.0-4.5이였다. Glucose나 cellobiose는 이 효소에 대하여 억제 효과를 나타내지 않는 반면 gluconolactone은 강력한 경쟁 억제 효과를 보였다. 효소의 아미노산 조성을 분석한 결과, 산성 및 glycine이 포함된 친수성아미노산이 높은 비율로 존재한 반면 염기성 아미노산은 낮은 비율로 존재하였다. # REFERENCES - Bidlingmeyer, B.A., Cohen, S.A. and Tarvin, T.L., 1984. Rapid analysis of amino acids using precolumn derivatization. J. Chromatogr., 336, 93-104. - Bradfford, M.M., 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principles of protein dye binding. Anal. Chem., 72, 248-254. - Chirico, W.T. and R.D. Brown, 1987. β-Glucosidase from T. reesei; subtrate-binding region and mode of action on [1-3H] cello-oligosaccharide. Eur. J. Biochem., 165, 343-351. - Dubois, M., K.A. Gilles, J.K. Haliton, P.A. Robers and F. Smith, 1956. Colorimetric method for detremination of sugars and relative substance. *Anal. Chem.*. 28, 350-356. - Hong, S.W., Y.C. Hah, P.J. Maeng, and C.S. Jeon, 1986. Purification and mode of action of low molecular weight β-1,4-glucan glucanohydrolase from *Trichoderma koningii*. Enzyme Microb. Technol., 8, 227-235. - Lambin, P.C., 1978. Reliability of molecular weight determination of proteins by polyacrylamide gradient gel electrophoresis in the presence of sodium dodecyl sulfate. *Anal. Biochem.*, 85, 114-123. - Lowry, O.H., N.J. Rosebrough, A.L. and R.J. Randall, 1951. Protein measurement with the Folin phenol reagent. J. Biochem., 193, 265-275. - 8. Neuhoff, V., N. Arold, D. Taube and W. Ehrhardt. - 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. *Electrophoresis.* 9, 255-262. - Nisizawa, K., 1973. Mode of the action of cellulase. J. Ferment. Technol., 51, 4-14. - Reese, E.T., R.G.H. Siu and H.S. Levinson, 1950. Biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol., 59, 485-497. - 11. Tileurgh, V.H. and G. Pettesson, 1985. Studies of the cellulolytic system of *T. reesei*. QM 9414, *Eur. J. Biochem.*, 148, 329-334. - Wood, T.M., 1968. Cellulolytic enzymes system of Trichoderma koningii: Separation of components attacking native cotton. Biochem. J., 109, 217-227. - Wood, T.M. and S.I. McCrae, 1972. The purification and properties of the C1 component of *Trichoderma koningii* cellulase. *Biochem. J.*, 128, 1183-1192. - 14. Wood, T.M. and S.I. McCrae, 1978. The cellulase of *Trichoderma koningii*: Purification and properties of some endoglucanase components with special referene to their action on cellulose when acting along and in synergism with the cellobiohydrolase. *Biochem. J.*, 171, 61-72. (Received May 1, 1991) (Accepted May 14, 1991)