• Title/Summary/Keyword: PNIPAAm

Search Result 25, Processing Time 0.024 seconds

Interaction between Poly(L-lysine) and Poly(N-isopropyl acrylamide-co-acrylic acid) in Aqueous Solution

  • Sung, Yong-Kiel;Yoo, Mi-Kyong;Cho, Chong-Su
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2000
  • A series of pH/temperature sensitive polymers were synthesized by copolymerizing N-isopro-pyl acrylamide(NIPAAm) and acrylic acid(AAc) . The influence of polyelectrolyte between poly(allyl amine) (PAA) and poly(L-lysine)(PLL) on the lower critical solution temperature(LCST) of pH/temperature sensitive polymer was compared in the range of pH 2∼12. The LCST of PNIPAAm/water in aqueous poly(NIPAAm-co-AAc) solution was determined by cloud point measurements. A polyelectrolyte complex was prepared by mixing poly(NIPAAm-co-AAc) with poly(allyl amine) (PAA) or poly(L-lysine) (PLL) solutions as anionic and cationic polyelectrolytes, respectively. The effect of polyelectrolyte complex formation on the conformation of PLL was studied as a function of temperature by means of circular dichroism(CD). The cloud points of PNIPAAm in the aqueous copolymers solutions were stongly affected by pH, the presence of polyelectrolyte solute, AAc content, and charge density. The polyelectrolyte complex was formed at neutral condition. The influence of more hydrophobic PLL as a polyelectrolyte on the cloud point of PNIPAAm in the aqueous copolymer solution was stronger than that of poly(allyl amine)(PAA). Although polymer-polymer complex was formed between poly(NIPAAm-co-AAc) and PLL, the conformational change of PLL did not occur due to steric hinderance of bulky N-isopropyl groups of PNIPAAm.

  • PDF

Temperature and pH-Responsive Release Behavior of PVA/PAAc/PNIPAAm/MWCNTs Nanocomposite Hydrogels

  • Jung, Gowun;Yun, Jumi;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.173-177
    • /
    • 2012
  • A drug delivery system (DDS) was prepared with a temperature and pH-responsive hydrogel. Poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAAc)/poly(N-isopropylacrylamide) (PNIPAAm)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by radical polymerization for the temperature and pH-responsive hydrogels. MWCNTs were employed to improve both the thermal conductivity and mechanical properties of the PVA/PAAc/PNIPAAm/MWCNT nanocomposite hydrogels. Various amounts of MWCNTs (0, 0.5, 1 and 3 wt%) were added to the nanocomposite hydrogels. PVA/PAAc/PNIPAAm/MWCNT nanocomposite hydrogels were characterized with a scanning electron microscope. The mechanical properties were measured with a universal testing machine. Swelling and releasing properties of nanocomposite hydrogels were investigated at various temperatures and pHs. Temperature and pH-responsive release behavior was found to be dependent on the content of MWCNTs in nanocomposite hydrogels.

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.

Thermosensitive Hydrogels Based on IPNs and Emulsion Blends of Poly (N-isopropylacrylamide) and Polyurethane

  • Cho, Sung-Man;Kim, Byung-Kyu
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.374-374
    • /
    • 2006
  • Poly (N-isopropylacrylamide) (PNIPAAm) shows a lower critical solution temperature (LCST) at $32^{\circ}C$. Consequently, its thermosensitivity has extensively been investigated in coating materials as well as biomedical and agricultural industry. However, mechanical properties of the swollen gels are generally poor and reinforcement is often desired. A series of interpenetrating polymer networks (IPNs) and emulsion blends hydrogels of polyurethane (PU) and PNIPAAm were prepared in order to overcome the shortcomings of a normal PNIPAAm hydrogels. Regarding the mechanical reinforcement of swollen gel, a significant increase in compression and tensile properties has been obtained by incorporating PU.

  • PDF

DNA-Functionalized Polymers and Nanoparticles for Gene Sensing

  • Maeda, Mizuo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.33-34
    • /
    • 2006
  • The graft copolymer consisting of poly(N-isopropylacrylamide) (PNIPAAm) and single-stranded DNA was prepared. Interestingly, the copolymer was found to form nanoparticles above physiological temperature. We found that non-crosslinking aggregation of the nanoparticles was induced by the hybridization of the surface-bound DNA with the full-match complementary DNA, but not with one-base mismatch. The core material is not restricted to PNIPAAm; DNA-functionalized gold nanoparticle was found to show a similar aggregation induced only by the fully-complementary DNA, resulting in rapid color change within 3 min at ambient temperature. This methodology is general in principle and applicable for wide variety of clinical gene diagnosis.

  • PDF

Velume Phase Transition of Poly (N-isopropylacrylamide-co-sodium methacrylate) Hydrogel Crosslinked with Poly(ethylene glycol) diacrylate (Poly(ethylene glyco1) diacrylate로 가교된 Poly(N-isopropylacrylamide) Hydrogel의 부피 상전이 특성)

  • 김선아;한영아;손성옥;지병철
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.653-660
    • /
    • 2002
  • The volume phase transition of poly(N-isopropylacrylamide) (PNIPAAm) and poly (N-isopropylacrylamide-co-sodium methacrylate) (P (NIPAAm-co-SMA)) hydrogels crosslinked with poly (ethylene glycol) diacrylate (PEGDA) was investigated in consideration of water content and surface area. The volume phase transition temperature of hydrogel was not affected by the concentration of crosslinking agent, which increased over 40$\^{C}$ by incorporating a small amount of SMA. Higher volume phase transition temperature was obtained when PEGAD was used as a crosslinking agent, suggesting that the chain length of crosslinking agent had a significant effect on the volume phase transition temperature. The surface area of PNIPAAm and P (NIPAAm-co-SMA) gels fell off around the volume phase transition temperature, resulting from the fact that the size of pores reduced remarkably in the course of the volume phase transition. Hence, the surface area and the pore size were considered to be important factors indicating the volume phase transition.

The Preparation of a Thermally Responsive Surface by Ion Beam-induced Graft Polymerization

  • Jung, Chang-Hee;Kim, Wan-Joong;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak
    • Journal of Radiation Industry
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2012
  • In this study, the preparation of a temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm)-grafted surface was performed using an eco-friendly and biocompatible ion beam-induced surface graft polymerization. The surface of a perfluoroalkoxy (PFA) film was activated by ion implantation and N-isopropylacrylamide (NIPAAm) was then graft polymerized selectively onto the activated regions of the PFA surfaces. Based on the results of the peroxide concentration and grafting degree measurements, the amount of the peroxide groups formed on the implanted surface was dependant on the fluence, which affected the grafting degree. The results of the FT-IR-ATR, XPS, and SEM confirmed that the NIPAAm was successfully grafted onto the implanted PFA. Moreover, the contact angle measurement at different temperatures revealed that the surface of the PNIPAAm-grafted PFA film was temperature-responsive.

Preparation and characterization of a thermal responsive of poly(N-isopropylacrylamide)/chitosan/gelatin hydrogels

  • Baghaei, Shaghayegh;Khorasani, Mohammad T.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.105-116
    • /
    • 2014
  • Synthesis of interpenetrating polymer network (IPN) of chitosan-gelatin (Cs-Ge) (as a primary network) and N-isopropylacrylamide (NIPAAm) monomer (as the secondary network) was carried out with different ratio. Its structure was characterized by FT-IR, which indicated that the IPN was formed. The memberanes were studied by swelling, weight loss with time. The interior morphology of the IPN hydrogels was revealed by scanning electron microscopy (SEM); the IPN hydrogels showed a interpenetrated network of NIPAAm/chitosan has layers with more minute stoma and canals compared to interpenetrated network of NIPAAm/gelatin. Lower critical solution temperature (LCST), equilibrium swelling ratio (ESR) and deswelling kinetics were measured. The DSC results noticed that LCST of IPN hydrogels with different ratio of Cs/Ge/PNIPAAm are around $33{\pm}2^{\circ}C$. The ESR obtained results showed that with a ratio of Cs/Ge/NIPAAm: 1/1/6, the swelling ratio increased drastically from room temperature to $36^{\circ}C$ but with a ratio of Cs/Ge/PNIPAAm: 1/3/6, decrease significantly at the same condition. Therefore the hydrogels have been changed from a hydrophilic structure to a hydrophobic structure. Furthermore with an increase in temperature from room to the LCST, the ESR of IPN with higher concentration of (PNIPAAm) and (Ge) decreases but de-swelling kinetics of them are faster. Due to the suitable and different kinetics of de-swelling and the equilibrium swelling ratio (ESR) in various proportions, and because of the morphology inside the mass which confirms other tests, these hydrogels are very appropriate as a smart thermosensitive hydrogels with rapid response.

Synthesis and Monomer Reactivity Ratio of PNIPAAM-PMMA Random Copolymer (PNIPAAM-PMMA Random Copolymer의 합성 및 단량체 반응성비 측정)

  • 이창배;조창기
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.168-173
    • /
    • 2000
  • Radical copolymerization of N-isopropylacrylamide (NIPAAM) with methyl methacrylate (MMA) was carried out in 1,4-dioxane using 2,2'-azobisisobutyronitrile (AIBN). To investigate the reactivity ratios of NIPAAM and MMA at different reaction temperatures, the copolymerization was allowed to proceed to low conversion (less than 10 wt%), and the reaction temperatures were 50, 60, and 7$0^{\circ}C$. The monomer reactivity ratios of NIPAAM and MMA were estimated by the graphical methods according to the Finemann-Ross equation. The ${\gamma}$$_1$ and ${\gamma}$$_2$ values for NIPAAM-MMA were 0.259 and 2.782 at 5$0^{\circ}C$, 0.271 and 2.819 at 6$0^{\circ}C$, and 0.286 and 2.915 at 7$0^{\circ}C$, respectively. As the reaction temperature increased, the ${\gamma}$$_1$ and ${\gamma}$$_2$ values increased. The activation energy difference was estimated by comparing the reactivity ratios at different reaction temperatures.

  • PDF