• Title/Summary/Keyword: PMV(Predicted Mean Vote

Search Result 79, Processing Time 0.028 seconds

Evaluation of Annual Indoor Environment Quality in Hospitals using Various Comfort-related Factors (보건의료시설의 실내 예상 평균 온열감(PMV), 이산화탄소 농도, 소음도, 조도의 통합실내쾌적도(IEQh)를 통한 연간 실내 쾌적도 평가)

  • Lee, Boram;Lee, Daeyeop;Ban, Hyunkyung;Lee, Sewon;Kim, KyooSang;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.214-222
    • /
    • 2017
  • Objectives: A hospital is a complex building that serves many different purposes. The indoor environment in a hospital plays a major role in patient well-being and the work efficiency of the hospital staff. This study was conducted to evaluate overall comfort in two major hospitals over the course of one year. Methods: Various indoor environmental conditions were measured in two general hospitals for one year (April 2014 to April 2015). Monitoring alternated between the hospitals at one month per respective monitoring session. The indoor air temperature, relative humidity (RH), mean radiant temperature and air velocity were measured in order to calculate the predicted mean vote (PMV). Carbon dioxide concentration, noise level and illumination level were concurrently measured and applied to the overall IEQ acceptance model for the hospitals (IEQh). Results: The IEQh at the two general hospitals was different at five spaces within a building. The IEQh for summer and winter were significantly different. Real-time IEQh demonstrated that indoor comfort was affected by the hospital's operating hours due to operation of the HVAC system. The percentage of indoor comfort in the hospitals was higher using PMV than IEQh. Conclusion: IEQh in the hospitals was different at locations with different purposes. Indoor comfort assessment using IEQh was stricter than with PMV. Additional research is needed in order to optimize the IEQh model.

An Study on the Evaluation of Thermal Indoor Environment and Thermal Sensations during Winter and Summer in Elderly Welfare Facilities (老人福祉施設의 冬.夏節期 室內 溫熱環境 測定 및 溫熱感 評價)

  • Kwak, Ho;Ryoo, Woo-Dong;Hwang, Kwang-Il;Hong, Won-Hwa
    • Journal of the Korean housing association
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • This study aims to survey the living spaces of the welfare facilities for the aged to get the objective relationships between the physical thermal environment and the users' subjective responses. The surveys were made twice in winter and once in summer during 2001 and 2002. An ambient temperature, relative humidity, air velocity, globe temperature were measured as physical elements of thermal environment and the ASHRAE Psychophysical Voting Scale were used as an evaluation index for subjective responses. As the results, the aged respond thermally comfortable, in spite of the differences among important factors such as thermal sensations, humidity sensations and air velocity sensations. Also the physical thermal environmental elements and the subjective responses indices exceed thermal comfort range calculated by PMV(Predicted Mean Vote) and PPD(Predicted Percentage Dissatisfied). It shows that the insulation of walls of the facilities is not enough for heating and cooling seasons, and the indoor environmental control is necessary.

Development of Air Quality Assessment Model for Subway Cabin (도시철도 객실 공기질 평가모델 개발)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Kim, Se-Young;Park, Jae-Hyung;Cho, Goan-Hyun;Yoo, Gun-Jong;Kim, Jung-Su
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.157-160
    • /
    • 2010
  • Management of indoor air quality of underground subway station is an important issue since the limited natural ventilation, limited sunshine incoming, and highly moistured atmosphere. The improvement in IAQ of platform is expected because most stations were installed with platform screen door currently, however, the poor air quality in tunnel might be affecting subway cabin indoor. In this study, we developed the air quality assessment model based on computational fluid dynamics. The geometry of air ventilation unit, seat, LCD monitors, and passengers were modeled using commercial software (Design Modeler) and fluid pattern and pollutants trajectories were analyzed by using CFX. We predicted the thermal comfort by predicted mean vote (PMV), distribution of CO2 and PM10 concentration. It is expected that this model can be used for the performance test of air cleaners which are under development.

  • PDF

A Study on the Effects of PMV Thermal Environment and Illumination on Visual Performance (PMV 온열 환경과 조도가 시작업 성능에 미치는 영향에 대한 연구)

  • Kim, Hyung-Sun;Kim, Hyoung-Tae;Kim, Hyoung-Sik;Kuwak, Won-Tack;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2014
  • In this study, a questionnaire was developed to assess error search and correction tasks, and an analysis was performed on the accuracy of the tasks and the time required for their completion in order to identify the effects of LED light source illumination on visual performance according to changes in a predicted mean vote(PMV) thermal environment. In addition, a subjective evaluation was performed by conducting a survey on the level of visual fatigue experienced during the tasks. In the experiment, four types of PMV thermal environments were established according to PMV values in the temperature range of $(17{\pm}1-29{\pm}1)^{\circ}C$ and the humidity range of $(50{\pm}5-60{\pm}5)%$, and the LED light source illumination was divided into three types: 400lx, 700lx, and 1000lx. The experimental results confirmed that the accuracy of the error search(LED p value=0.058, PMV*LED p value=0.083) and correction tasks and the time required(LED p value=0.004, PMV p value=0.000) for their completion were affected by changes in both the PMV thermal environment and the LED light source illumination, whereas a significant difference in visual fatigue was observed only in the PMV thermal environment(p value=0.003).

Analysis of a forest healing environment based on the thermal comfort and NVOC characteristics of Chungnam National University Experimental Forests

  • Hyelim Lee;Dawou Joung;Siok An;Doyun Song;Bum-Jin Park;Seungmo Koo
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.1035-1045
    • /
    • 2022
  • The purpose of this study is to provide information on a forest healing environment using the analysis of nature volatile organic compounds (NVOCs) and thermal comfort in Chungnam National University Experimental Forest, with the aim of using the Experimental Forest as a healing environment for health promotion. We analyzed NVOCs and thermal comfort of Chungnam National University Experimental Forest measured on September 12th, 2021. As a result of the NVOC analysis, a total of seven substances were detected, mainly including alpha pinene and beta pinene. The detection amount for each time period was highest at the time of sunset. The thermal comfort was analyzed by time-dependent changes and changes according to clothing and exercise amount. The results showed that the predicted mean vote of the experimental forest is within the range of 'slightly cool' and 'slightly warm' sensation, and thus a comfortable thermal environment could be controlled by the amount of clothing and activity. Based on the analysis, this study provides information on the healing environment of the experimental forest at Chungnam National University. It also indicates that the forest can be used as a health promotion and healing environment with thermal comfort by composing a physical activity program of appropriate intensity for each time period.

Comparison of the PMV and ADPI according to Adapted Height of Ceiling-type System Air-conditioner in Large space (천정형 정풍량 시스템에어컨의 적용높이에 따른 실내온열환경 특성)

  • Sung, Sang-Chul;Kim, Hyouk-Soon;Chin, Sim-Won;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.590-595
    • /
    • 2009
  • PMV and ADPI were numerically investigated in a large space of various ceiling height with air-conditioning systems of two type. The numerical results showed that it is small that the growth of cooling load according to ceiling height rise in a large space without windows. In case of system air-conditioner of duct type embedded in the ceiling, the air mixing effect in indoor is superior to a case installed 4way cassette type in it. For controling thermal comfort at indoor, a system air-conditioner of duct type embedded in the ceiling is little influenced according to ceiling height rise in a large space considered.

  • PDF

Development of Variable Duty Cycle Control Method for Air Conditioner using Artificial Neural Networks (신경회로망을 이용한 에어컨의 가변주기제어 방법론 개발)

  • Kim, Hyeong-Jung;Doo, Seog-Bae;Shin, Joong-Rin;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.10
    • /
    • pp.399-409
    • /
    • 2006
  • This paper presents a novel method for satisfying the thermal comfort of indoor environment and reducing the summer peak demand power by minimizing the power consumption for an Air-conditioner within a space. Korea Electric Power Corporation (KEPCO) use the fixed duty cycle control method regardless of the indoor thermal environment. However, this method has disadvantages that energy saving depends on the set-point value of the Air-Conditioner and direct load control (DLC) has no net effects on Air-conditioners if the appliance has a lower operating cycle than the fixed duty cycle. In this paper, the variable duty cycle control method is proposed in order to compensate the weakness of conventional fixed duty cycle control method and improve the satisfaction of residents and the reduction of peak demand. The proposed method estimates the predict mean vote (PMV) at the next step with predicted temperature and humidity using the back propagation neural network model. It is possible to reduce the energy consumption by maintaining the Air-conditioner's OFF state when the PMV lies in the thermal comfort range. To verify the effectiveness of the proposed variable duty cycle control method, the case study is performed using the historical data on Sep. 7th, 2001 acquired at a classroom in Seoul and the obtained results are compared with the fixed duty cycle control method.

Analysis of Comfortable Environment in the Classroom with Humidification and Ventilation in Winter (겨울철 가습 및 환기에 따른 교실내 쾌적환경 분석)

  • Sheng, Nai-Li;Cheong, Seong-Ir;Lee, Jae-Keun;Park, Jong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1213-1219
    • /
    • 2008
  • This experimental study was to analyze thermal comfort and indoor air quality(IAQ) with ventilation and humidification in the classroom when system air conditioner was operated. The thermal comfort was estimated by the PMV index and the concentration of $CO_2$ and total suspended particle(TSP) were measured and compared with ventilation and humidification. As a result, the class room temperature distribution was $2{\sim}5^{\circ}C$ low during operating ventilation system and humidification. At 60% RH, PMV values of measuring points were ranged from +0.5 to -0.5 indicating optimal the range of thermal comfort. The average concentration of $CO_2$ gas and TSP were reduced 645 ppm, 0.17 mg/$m^3$ respectively, during operating the ventilation system. From the results, to maintain comfortable environment in the heated classroom, the ventilation and humidification were needed in winter season.

  • PDF

Analysis of Comfortable Environment in the Classroom with Humidification and Ventilation in Winter (겨울철 가습 및 환기에 따른 교실내 쾌적환경 분석)

  • Cheong, Seong-Ir;Sheng, Nai-Li;Kim, Doo-Hyun;Lee, Jae-Keun;Hwang, Yu-Jin;Park, Jong-Hoon;Seo, Seok-Jang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.402-408
    • /
    • 2009
  • In this paper, the effects of ventilation and humidification on thermal comfort and indoor air quality(IAQ) were evaluated in a classroom when a heat pump system was operated in winter. Thermal comfort parameters, such as temperature, relative humidity, globe temperature and air velocity, were measured at 9 points in the classroom. The concentration of $CO_2$ and total suspended particles(TSP) in the classroom were measured in order to analyze IAQ. Temperature distribution in the classroom was decreased by $2{\sim}5^{\circ}C$ when the ventilation system and the humidifier were operated. When the relative humidity was adjusted to 60% by operating the humidifier and the ventilation system, the predicted mean vote(PMV) in the classroom was within the comfortable range of $-0.5{\sim}0.5$. When the ventilation system was operated, the average concentration of $CO_2$ and TSP were decreased by 645 ppm and 0.17 $mg/m^3$, respectively. This paper suggests the humidification and ventilation conditions to maintain the comfortable environment in the school classroom in winter experimentally.

The Effect of Tree Density of Pinus koraiensis Forest on the Thermal Comfort and the Physiological Response of Human Body in Summer Season (잣나무림의 입목밀도가 여름철 온열환경 및 인체 생리반응에 미치는 영향)

  • Park, Bum-Jin;Kyeon, Chiwon;Choi, Yoonho;Yeom, Dong-geol;Kim, Geonwoo;Joung, Dawou
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.261-266
    • /
    • 2015
  • This study was conducted to examine the effect of tree density of Pinus koraiensis forest on the thermal comfort and the physiological response of human body in summer season. As the indicators of thermal comfort were used the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD), while the heart rate variability was used for the physiological indicator of subjects. The subjects were 15 physically healthy men and women in their 20s ($23.7{\pm}1.7$ years old). The subjects sat in each site to measure HRV for 5 minutes and the thermal comfort of each site was measured. As a results, it was proven by PMV and PPD that the Pinus koraiensis forest with 120% tree density was thermally more comfortable than the Pinus koraiensis forest with 80% tree density. In case of the subjects' physiological response, the Pinus koraiensis forest with 120% tree density showed significantly higher HF of HRV than the Pinus koraiensis forest with 80% tree density and significantly lower LF/HF. Therefore, the findings of this study scientifically proved that the Pinus koraiensis forest with 120% tree density is thermally more comfortable and physiologically more relaxing than the Pinus koraiensis forest with 80% tree density.