• 제목/요약/키워드: PMSM motor

Search Result 494, Processing Time 0.045 seconds

A study on Field-Weakening Control for Permanent Magnet Synchronous Motor (영구자석형 동기전동기의 약계자제어에 관한 연구)

  • Lee, Cheol-Gyun;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.5-9
    • /
    • 1990
  • A permanent magnet synchronous motor(PMSM) differs from an ordinary synchronous motor in that the former has no field winding and the field flux can not be controlled by field current. A field-weakening control of PMSM utilizing the demagnetization due to d-axis armature reaction is equivalent to reducing the field current. In this paper, the armature resistance is considered for the optimum field-weakening control.

  • PDF

A study on Transfer Function Identification of Motor-Mechanical System with PMSM (PMSM으로 구성된 모터-기구부 시스템의 전달함수 추정에 관한 연구)

  • Park, Seung-Kyu;Choi, Young-Kwon;Park, Doo-Hwan;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.546-549
    • /
    • 2002
  • In this paper, a simulation system, which is almost same with the real motor-mechanical control system, is established. The real system is identified by using the data from DSP(TMS320F240). The RLS(Recursive Least Square) algorithm is used for the identification and MATLAB Simulink program is used for simulation. The exact simulation system obtained by using the proposed method is very useful for analysis and design of motor-mechanical control systems.

  • PDF

Speed Control of Permanent Magnet Synchronous Motor by Adaptive Control (형구자석형 동기정동기의 적응제어에 의한 속도제어)

  • 유정웅;우광준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.166-172
    • /
    • 1989
  • The model reference adaptive control algorithm (MRAC), which is one of the methods for controlling the speed of a permanent magnet synchronous motor (PMSM), has been developed using the autoregressive (ARMAX) method. Applying this algorithm to a microprocessor which is used in driving PMSM with PI controller, it has been proved that the response speed of the reference input follows closely that of the reference model. It has also been proved by experiments that the quick speed response without over-shoot could be obtained for the motor system with variable parameters.

  • PDF

Robust Control of Permanent Magnet Synchronous Motor using Fuzzy Logic Controller (퍼지논리 제어기를 이용한 영구자석 동기전동기의 강인성 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Chae, So-Hyung;Kim, Chun-Sam;Yoo, Bo-Min
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1228-1230
    • /
    • 1992
  • The permanent magnet synchronous motor(PMSM) is receiving Increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. By vector-controll method, PMSM has the same operating characterics as seperately excited dc motor. The drive system of servo motor is requested to have an accurate response for the reference input and a quick recovery for the disturbance such as load torque. However, when the unknown disturbances and parameter variations are imposed on the permanent magnet synchronous motor(PMSM), the drive system is significantly effected by them. As a result, the drive system with both a fast compensation and a robustness to a parameter variations is requested. This paper investigates the possibility of applying the fuzzy logic controller(FLC) using Multi-Rule Base In a servo motor control system. In this paper, The five Rule Bases(1 to 5) are selected to recover the state error caused by the disturbance in steady state. In the initial operating mode. Rule Base 0 is used. To show the validity of the proposed fuzzy logic controll system, the computer simulation results are provided.

  • PDF

A study on High-Precision Position Control of Permanent Magnet Synchronous Motor for Semiconductor Equipments (반도체 제조 장비용 영구자석형 동기전동기의 고분해능 위치제어에 관한 연구)

  • Hong Sun-Ki;Hwang In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.432-438
    • /
    • 2005
  • In this paper, the high precision position control of AC Servo motor for semiconductor equipment is studied. The control system was implemented using TI DSP TMS320F2812 which has 150 MIPS speed for next generation motor control. The controlled 100W PMSM motor has 2,500 ppr optical incremental encoder. The control system has speed controller and current controller to control the motor position. The encoder pulses are divided into 4 times, which has 10,000 ppr and the motor system has the position accuracy of 1/10,000. If the resolution of the encoder is increased, the resolution of the position control will be increased.

  • PDF

Design of on Adaptive Current Controller for a PMSM AC Servo Motor (PMSM 교류 서보모터의 적응형 전류 제어기 설계)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.73-81
    • /
    • 2007
  • To improve the capability of instantaneous torque control, a design method of an MRAC-based adaptive current controller for a PMSM servo motor is proposed. In the synchronous frame current controller, a new control inputs can be obtained through the decoupling compensation. Using this, a desired controller bandwidth can be assigned However, the control performance may be degraded due to disturbances caused by the parameter variations or dead time of the switch. To improve these drawbacks, an adaptive current controller is proposed and the design method is obtained using the hyperstability theory. The asymptotic stability is proved and the effectiveness is verified through simulations and experiments using DSP TMS320C31.

Passivity-Based Control System of Permanent Magnet Synchronous Motors Based on Quasi-Z Source Matrix Converter

  • Cheng, Qiming;Wei, Lin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1527-1535
    • /
    • 2019
  • Because of the shortcomings of the PID controllers and traditional drive systems of permanent magnet synchronous motors (PMSMs), a PMSM passivity-based control (PBC) drive system based on a quasi-Z source matrix converter (QZMC) is proposed in this paper. The traditional matrix converter is a buck converter with a maximum voltage transmission ratio of only 0.866, which limits the performance of the driven motor. Therefore, in this paper a quasi-Z source circuit is added to the input side of the two-stage matrix converter (TSMC) and its working principle has also been verified. In addition, the controller of the speed loop and current loop in the conventional vector control of a PMSM is a PID controller. The PID controller has the problem since its parameters are difficult to adjust and its anti-interference capability is limited. As a result, a port controlled dissipative Hamiltonian model (PCHD) of a PMSM is established. Thereafter a passivity-based controller based on the interconnection and damping assignment (IDA) of a QZMC-PMSM is designed, and the stability of the equilibrium point is theoretically verified. Simulation and experimental results show that the designed PBC control system of a PMSM based on a QZMC can make the PMSM run stably at the rated speed. In addition, the system has strong robustness, as well as good dynamic and static performances.

The control method of In-wheel PMSM for electric scooter (전기스쿠터용 IN-WHEEL 영구자석 동기전동기의 제어방법)

  • Son, Tae-Sik;Mok, Hyung-Soo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lee, Yong-Kyun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.65-66
    • /
    • 2010
  • This paper deals with PMSM control method for electric scooter. Electric scooter's motor has special structure that is hard to attach resolver or encoder. This paper suggests a method that it is performed of vector control for PMSM using hall sensor. After driving BLDC motor in low speed typically, driving mode is changed to PMSM operation and performs MTPA and flux weakness control. Proposed method is verified through simulation and testing.

  • PDF

A Sensorless PMSM Control Using the Separation of Two Voltage Source (이중전압원 분리를 이용한 PMSM의 센서리스 제어)

  • Jin-Woo Ahn;Sung-Jun Park;Dong-Hee Lee
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This paper presents a sensorless control strategy of a PMSM(Permanent Magnet Sycchoronous Motor). This method is very simple to compute the position angle of a rotor. A principle and a practical solution are described. A sensorless control algorithm is proposed to remove a mechanical position sensor. The theory is based on the superposition principle. The state equation of a motor is divided into two conditions: one is the state equation of exciting voltage and phase current in a constraint, the other is the state equation of back EMF(Electromotive Force) and phase current in a short circuit. Based on the analysis, short circuit current by back EMF is computed and then the information of position angle is calculated. The proposed method is verified by experimental results.

Adaptive Fuzzy Control for High Performance Speed Controller in PMSM Drive (PMSM 드라이브의 고성능 속도제어를 위한 적응 퍼지제어기)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.79-81
    • /
    • 2002
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance speed controller in permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

  • PDF