• Title/Summary/Keyword: PMSM Drive

Search Result 193, Processing Time 0.027 seconds

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

AC Servo Motor Control Using Low Voltage High Performance DSP (저전압 고성능 DSP를 이용한 AC 서보모터 제어)

  • 최치영;홍선기
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Recently with the development of power switching device and DSP which has peripheral devices to control AC servo system, the servo technology has met a new development opportunity. Those things make it possible to reduce the time of developing a AC servo system. Fixed point DSP such as TMS320F240x, and TMS320F28x series have a disadvantage in calculating floating number where TMS320C32 or TMS320C31 are floating point DSP. However they usually become a complex hardware system to implement the AC servo system and it increases the cost. In this study, a DSP based AC servo system with a 3-phase PMSM is proposed. The newly produced DSP TMX320F28l2-version C which has the performance of fast speed, 150MIPS, and a rich peripheral interface such as a 12bit high speed AD converter, QEP(Quadrature Encoder Pulse) circuit, PDPINT(Power Drive Protect Interrupt), SVPWM module and dead time module are used. This paper presents a method to overcome fixed point calculating using scaling all parameters. Also space vector pulse width modulation (SVPWM) using off-set voltage and a digital PI control are implemented to the servo system.

  • PDF

A Study on Drive in Extending Break Power of The PMSM using series Resistor (영구 자석형 동기전동기(PMSM)의 직렬저항을 사용한 제동력 운전 확보에 관한 연구)

  • Hwang, Lark Hoon;Na, Seung Kwon;Kim, Young Bog
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.127-137
    • /
    • 2012
  • In this paper, method using electric braking from stop area to high-speed area was presented in order to improve air-brake. And electric braking method can be improved environmental problems, efficiency, economy, etc. Method for electrical complete braking are two ways that method of inserting series resistance between the motor and the inverter, and method of inverter output voltage increase. In this paper, use series resistance insert method because economical and easy to apply. In addition, Series resistor is used short circuit method for reduce the power loss. In improved efficiency and the laboratory environment for secure braking, resistance insert method and inverter output voltage increase method showed same characteristics in all areas.

A Fault Diagnosis Technique of an Inverter-fed PMSM under Winding Shorted Turn and Inverter Switch Open Fault (권선 단락 및 스위치 개방 고장 시의 인버터 구동 영구자석 동기전동기의 고장 진단 기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.94-105
    • /
    • 2010
  • To detect faults in an inverter-fed permanent magnet synchronous motor (PMSM) drive under the circumstance having faults in a stator winding and inverter switch, an on-line basis fault detecting scheme during operation is presented. The proposed scheme is achieved by monitoring the second-order harmonic component in q-axis current and the fault is detected by comparing these components with those in normal conditions. The linear interpolation method is employed to determine the harmonic data in normal operating conditions. As soon as the fault is detected, the operating mode is changed to identify a fault type using the phase current waveform. To verify the effectiveness of the proposed fault detecting scheme, a test motor to allow inter-turn short in the stator winding has been built. The entire control algorithm is implemented using DSP TMS320F28335. Without requiring an additional hardware, the fault can be effectively detected by the proposed scheme during operation so long as the steady-state condition is satisfied.

Electrical Characteristics and Electromagnetic Excitation Force Comparison of PM Motor according to the Driving method (영구자석형 전동기의 구동방법에 따른 전기적 특성 및 전자기적 가진원 분석)

  • Lee, Su-Jin;Kim, Do-Jin;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.144-151
    • /
    • 2013
  • This paper presents a result of the mechanical noise and vibration analysis as well as the electrical characteristics analysis of the permanent magnet(PM) motor according to the driving method that is Brushless DC(BLDC) drive and Brushless AC(BLAC) drive. To do that, the characteristics of the PM motor, which have the same output power but different driving method, are investigated. At that time, the characteristics such as torque, torque ripple and flux density, and so on, are obtained by finite element analysis(FEA). Besides, noise and vibration are obtained by spectrum analysis. The magnetic noise is defined as noise generated from vibrations due to electromagnetic excitation force. In this paper, the electromagnetic excitation force is analyzed and design process of noise reduction is proposed. Finally, The validity of the analysis results is verified by test.

A Study on the Speed Control of PMSM for Elevator Drive (엘리베이터구동용 영구자석형 동기전동기의 속도제어에 관한 연구)

  • Yu J.S.;Kim L.H.;Choi G.J.;Yoon K.C.;Jung M.T.;Kim Y.C.;Lee S.S.;Won C.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.461-466
    • /
    • 2003
  • This paper presents the speed control of the surface-mounted permanent-magnet synchronous motors (SMPMSM) for the elevator drive. The elevator motor needs to be a compact and slim type. Essentially, the proposed scheme uses a vector control algorithm for a speed and torque control. This system is implemented using a high speed 32-bit DSP (TMS320C31-50), a high-integrated logic device FPGA (EPF10K10-Tl144-3) to design compactly and Inexpensively The proposed scheme is verified through digital simulation and experiments for a three-phase 13.3kW SMPMSM as a MRL(MachineRoomless) elevator motor ill the laboratory. Finally, experiment of the test tower was performed with a 48kW PWM converter-inverter system for a high- speed elevator .

  • PDF

Development of An Integrated Controller for a Direct Drive Turbo Compressor (직접 구동방식 터보 압축기를 위한 통합 제어기 개발)

  • 권정혁;변지섭;최중경
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.225-234
    • /
    • 2003
  • Turbo compressors need high speed rotating impeller in structure, high rate gearbox and conventional induction motor. This mechanical system increased moment of inertia and mechanical friction loss. Recently turbo compressor has adopted a super high-speed motor and driver and have made its size smaller and mechanical friction loss at minimum. In this paper, variable super high - speed motor controller, compressor controller and MMI controller are implemented with only one DSP (TMS320VC33) chip for a 150HP, 70,000rpm direct drive turbo compressor. It was required hardware and software integration. The result of integration, Controller hardware became simple and all control software are developed same developing tool. The implements turbo compressor meets the requirements.

Development of In-wheel Motor for Power Add-on Drive Wheelchair (수전동 휠체어용 모터 개발)

  • Hong, Eung-Pyo;Park, Sei-Hoon;Oh, Hong-Seok;Ryu, Jae-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.992-999
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity, are easier to transport, and may be an excellent alternative for the typical manual or electric wheelchairs. The development of in-wheel motor for a PADW is the principal issues. In this paper, design, implementation, and testing of the permanent magnet synchronous motor (PMSM) for a PADW are presented. To design output power and torque of the motor, the equation of motion has been investigated. The design parameters were calculated and the dimension and shape of the motor which was limited by the In-wheel mechanism of the PADW were done by applying FEM and optimal design technique. The prototype of the motor mentioned above was fabricated with precise machining and assembling. Then the motor tested on dynamometer and the measured results of the motor were verified by comparing the design results. The fabricated motor was 80 mm in length with a diameter of 110 mm and small enough to be attached the driving unit of the PADW.

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.

Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.220-229
    • /
    • 2002
  • In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely; surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to achieve loss minimization at difffrent speeds and load torque values. Data for training the NNC are obtained through off-line simulations of SPMSM and IPMSM at difffrent operating conditions. Accuracy and fast response of each NNC is proved by applying sudden changes in speed and load and tracking the UC output. The drives'efHciency obtained by flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying the angle of advance "$\vartheta$" of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at diffErent values of $\vartheta$, derived to be function of speed and load torque. A NN is also designed, and trained to vary $\vartheta$ following the derived control law. The accuracy and fast response of the NN controller is also proved.so proved.