• Title/Summary/Keyword: PMSM Drive

Search Result 193, Processing Time 0.036 seconds

PMSM Servo Drive for V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Chebyshev NN Control System

  • Lin, Chih-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.408-421
    • /
    • 2015
  • Because the wheel of V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor (PMSM) has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming job. In order to overcome difficulties for design of the linear controllers, a hybrid recurrent Chebyshev neural network (NN) control system is proposed to control for a PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Chebyshev NN control system consists of an inspector control, a recurrent Chebyshev NN control with adaptive law and a recouped control. Moreover, the online parameters tuning methodology of adaptive law in the recurrent Chebyshev NN can be derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, the optimal learning rate of the parameters based on discrete-type Lyapunov function is derived to achieve fast convergence. The recurrent Chebyshev NN with fast convergence has the online learning ability to respond to the system's nonlinear and time-varying behaviors. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.

A Novel Discrete-Time Predictive Current Control for PMSM

  • Sun, Jung-Won;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1915-1919
    • /
    • 2004
  • In this paper, we propose a new discrete-time predictive current controller for a PMSM(Permanent Magnet Synchronous Motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that it takes to apply the voltage to motor. A new control strategy in this paper is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking and is proposed simplified calculation. Moreover, the validity of the proposed method is demonstrated by numerical simulations and the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF

인터넷 웹 기반의 PMSM 원격 제어시스템 (Internet Web-Based Remote Control System for Permanent Magnet Synchronous Motor Drives)

  • 김대현;최양광;김영석;이을재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.42-44
    • /
    • 2003
  • As the industry is developed, uses of various electric motor are increasing from general home to various fields of industry, and the kind becomes various daily. For these reasons, it is required to study the remote control and a package management about change of a speed drive system, the supervision of administration appliance by real time, and the collection and process data together using internet prevailed on industry whole. This paper deals with the development of a Web-Based remote control system for permanent magnet synchronous motor drives. The client/server system using TCP/IP protocols and DSP controller for remote control through internet and the Web interface that users can confirm data and state of PMSM(Permanent Magnet Synchronous Motor) is developed. This system is available for driving, braking, variable speed control and monitoring for PMSM in real time through administration program of Web-Based.

  • PDF

영구자석 동기전동기 드라이브의 확장형 칼만필터를 이용한 개방성 고장진단 기법 (Fault Diagnosis Scheme for Open-Phase Fault of Permanent Magnet Synchronous Motor Drive using Extended Kalman Filter)

  • 안성국;박병건;김래영;현동석
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.191-198
    • /
    • 2011
  • 본 논문에서는 영구자석 동기전동기 구동용 인버터 스위치에서 개방성 고장이 발생하여도 구동 성능을 유지하기 위한 고장진단 기법이 제안 되었다. 제안한 고장진단 기법은 확장형 칼만필터에 의해 실시간으로 추정된 고정자 저항이 개방성 고장발생 시 고장발생 위치에 따라서 다르게 추정되는 것을 이용하여 고장을 진단한다. 고장진단을 위한 제어 알고리즘을 별도의 하드웨어 구성없이 기존의 제어 프로그램에 추가함으로써 비용을 저감 시킬 수 있으며 추정된 고정자 저항은 상수 변동에 영향을 받는 제어기의 전동기 상수로 사용함으로써 제어 성능을 향상 시킬 수 있다. 제안한 고장진단 기법의 타당성은 시뮬레이션과 실험을 통하여 검증하였다.

전동기 친화형 출력필터를 이용한 영구자석 동기전동기의 센서리스 구동 성능 향상 (Performance Improvement of Sensorless PMSM Drives using Motor Friendly Output Filter)

  • 부한영;백승훈;한상훈;조영훈
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.329-332
    • /
    • 2020
  • A back-electromotive force (back-EMF) estimator for a permanent magnet synchronous motor (PMSM) uses the three-phase voltage references of a current controller to estimate rotor position. However, owing to voltage drops caused by the nonlinear characteristics of switches and passive components, the actual voltage in the motor and the three-phase voltage reference may not match. This study proposes a sensorless control method using a sine-wave output filter applied between the motor drive system and PMSM. The precise voltage in the motor can be measured with the sine-wave output filter and applied to the input of the estimator. Moreover, given that the voltage in the motor can be measured precisely at extremely low speeds, the stable operation range of the back-EMF estimator can be secured. Experimental results show that the proposed sensorless control method has stable operation at extremely low speeds compared with conventional sensorless control.

A Novel Discrete-Time Predictive Current Control for PMSM

  • Sun, Jung-Won;Lee, Jin-Woo;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2503-2508
    • /
    • 2005
  • In this paper, we propose a new discrete-time predictive current controller for a PMSM(Permanent Magnet Synchronous Motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that it takes to apply the voltage to motor. A new control strategy in this paper is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking. Moreover, the validity of the proposed method is demonstrated by numerical simulations and the simulation results will present the improvements of predictive controller and accuracy of the current controller.

  • PDF

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법 (Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM)

  • 박병준;구본관
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

직접 구동방식의 터보 압축기를 위한 150마력,70,000rpm 초고속 전동기 구동 시스템 개발 (The Development of 150HP/ 70,000rpm Super High Speed Motor Driver for Direct Drive Method Turbo Compressor)

  • 권정혁;변지섭;최종경
    • 전자공학회논문지SC
    • /
    • 제40권1호
    • /
    • pp.45-54
    • /
    • 2003
  • 종래의 터보기기는 회전자의 높은 회전속도를 얻기 위하여 증속기어를 사용하였으나 근래에는 초고속 전동기를 적용하여 기계적인 효율 및 시스템의 소형차에 관한 연구가 활발히 진행중이다. 본 논문은 직접구동방식의 터보 압축기를 위한 초고속 영구자석 동기전동기 구동시스템에 관한 논문으로서 150마력 70,000rpm 영구자석 동기전동기 구동시스템을 개발하여 상품에 적용하였다.

PMSM 드라이브의 효율 최적화 벡터제어 (Efficiency Optimization Control of PMSM)

  • 이홍균;이정철;정택기;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1143-1145
    • /
    • 2002
  • IPMSM (Interior Permanent Magnet Synchronous Motor) is widely used in many applications such as an electric vehicle, compressor drives of air conditioner and machine tool spindle drives. In order to maximize the efficiency in such applications, this paper is proposed the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The proposed control algorithm is applied to IPMSM drive system, the operating characteristics controlled by efficiency optimization control are examined in detail by simulation.

  • PDF