• Title/Summary/Keyword: PMP22

Search Result 37, Processing Time 0.018 seconds

Use of Cylindrical Chambers as Substitutes for Parallel-Plate Chambers in Low-Energy Electron Dosimetry

  • Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Cho, Jin Dong;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Current dosimetry protocols recommend the use of parallel-plate chambers in electron dosimetry because the electron fluence perturbation can be effectively minimized. However, substitutable methods to calibrate and measure the electron output and energy with the widely used cylindrical chamber should be developed in case a parallel-plate chamber is unavailable. In this study, we measured the correction factors and absolute dose-to-water of electrons with energies of 4, 6, 9, 12, 16, and 20 MeV using Farmer-type and Roos chambers by varying the dose rates according to the AAPM TG-51 protocol. The ion recombination factor and absolute dose were found to be varied across the chamber types, energy, and dose rate, and these phenomena were remarkable at a low energy (4 MeV), which was in good agreement with literature. While the ion recombination factor showed a difference across chamber types of less than 0.4%, the absolute dose differences between them were largest at 4 MeV at approximately 1.5%. We therefore found that the absolute dose with respect to the dose rate was strongly influenced by ion-collection efficiency. Although more rigorous validation with other types of chambers and protocols should be performed, the outcome of the study shows the feasibility of replacing the parallel-plate chamber with the cylindrical chamber in electron dosimetry.

A Case of Cauda Equina Syndrome in Early-Onset Chronic Inflammatory Demyelinating Polyneuropathy Clinically Similar to Charcot-Marie-Tooth Disease Type 1

  • Lee, Seung Eun;Park, Seung Won;Ha, Sam Yeol;Nam, Taek Kyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.6
    • /
    • pp.370-374
    • /
    • 2014
  • To present a case of cauda equina syndrome (CES) caused by chronic inflammatory demyelinating polyneuropathy (CIDP) which seemed clinically similar to Charcot-Marie-Tooth disease type1 (CMT1). CIDP is an immune-mediated polyneuropathy, either progressive or relapsing-remitting. It is a non-hereditary disorder characterized by symmetrical motor and sensory deficits. Rarely, spinal nerve roots can be involved, leading to CES by hypertrophic cauda equina. A 34-year-old man presented with low back pain, radicular pain, bilateral lower-extremity weakness, urinary incontinence, and constipation. He had had musculoskeletal deformities, such as hammertoes and pes cavus, since age 10. Lumbar spine magnetic resonance imaging showed diffuse thickening of the cauda equina. Electrophysiological testing showed increased distal latency, conduction blocks, temporal dispersion, and severe nerve conduction velocity slowing (3 m/s). We were not able to find genetic mutations at the PMP 22, MPZ, PRX, and EGR2 genes. The pathologic findings of the sural nerve biopsy revealed thinly myelinated nerve fibers with Schwann cells proliferation. We performed a decompressive laminectomy, intravenous IgG (IV-IgG) and oral steroid. At 1 week after surgery, most of his symptoms showed marked improvements except foot deformities. There was no relapse or aggravation of disease for 3 years. We diagnosed the case as an early-onset CIDP with cauda equine syndrome, whose initial clinical findings were similar to those of CMT1, and successfully managed with decompressive laminectomy, IV-IgG and oral steroid.

Acceptance Test and Clinical Commissioning of CT Simulator

  • An, Hyun Joon;Son, Jaeman;Jin, Hyeongmin;Sung, Jiwon;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.160-166
    • /
    • 2019
  • This study examined the clinical use of two newly installed computed tomography (CT) simulators in the Department of Radiation Oncology. The accreditation procedure was performed by the Korean Institute for Accreditation of Medical Imaging. An Xi R/F dosimeter was used to measure the CT dose index for each plug of the CT dose index phantom. Image qualities such as the Hounsfield unit (HU) value of water, noise level, homogeneity, existence of artifacts, spatial resolution, contrast, and slice thickness were evaluated by scanning a CT performance phantom. All test items were evaluated as to whether they were within the required tolerance level. CT calibration curves-the relationship between CT number and relative electron density-were obtained for dose calculations in the treatment planning system. The positional accuracy of the lasers was also evaluated. The volume CT dose indices for the head phantom were 22.26 mGy and 23.70 mGy, and those for body phantom were 12.30 mGy and 12.99 mGy for the first and second CT simulators, respectively. HU accuracy, noise, and homogeneity for the first CT simulator were -0.2 HU, 4.9 HU, and 0.69 HU, respectively, while those for second CT simulator were 1.9 HU, 4.9 HU, and 0.70 HU, respectively. Five air-filled holes with a diameter of 1.00 mm were used for assessment of spatial resolution and a low contrast object with a diameter of 6.4 mm was clearly discernible by both CT scanners. Both CT simulators exhibited comparable performance and are acceptable for clinical use.

Guideline on Acceptance Test and Commissioning of High-Precision External Radiation Therapy Equipment

  • Kim, Juhye;Shin, Dong Oh;Choi, Sang Hyoun;Min, Soonki;Kwon, Nahye;Jung, Unjung;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.123-136
    • /
    • 2018
  • The complex dose distribution and dose transfer characteristics of intensity-modulated radiotherapy increase the importance of precise beam data measurement and review in the acceptance inspection and preparation stages. In this study, we propose a process map for the introduction and installation of high-precision radiotherapy devices and present items and guidelines for risk management at the acceptance test procedure (ATP) and commissioning stages. Based on the ATP of the Varian and Elekta linear accelerators, the ATP items were checked step by step and compared with the quality assurance (QA) test items of the AAPM TG-142 described for the medical accelerator QA. Based on the commissioning procedure, dose quality control protocol, and mechanical quality control protocol presented at international conferences, step-by-step check items and commissioning guidelines were derived. The risk management items at each stage were (1) 21 ionization chamber performance test items and 9 electrometer, cable, and connector inspection items related to the dosimetry system; (2) 34 mechanical and dose-checking items during ATP, 22 multileaf collimator (MLC) items, and 36 imaging system items; and (3) 28 items in the measurement preparation stage and 32 items in the measurement stage after commissioning. Because the items presented in these guidelines are limited in terms of special treatment, items and practitioners can be modified to reflect the clinical needs of the institution. During the system installation, it is recommended that at least two clinically qualified medical physicists (CQMP) perform a double check in compliance with the two-person rule. We expect that this result will be useful as a radiation safety management tool that can prevent radiation accidents at each stage during the introduction of radiotherapy and the system installation process.

Estimation of Noise Level and Edge Preservation for Computed Tomography Images: Comparisons in Iterative Reconstruction

  • Kim, Sihwan;Ahn, Chulkyun;Jeong, Woo Kyoung;Kim, Jong Hyo;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Purpose: This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR). Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR. Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, respectively. Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose4, and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.

Comparison between Old and New Versions of Electron Monte Carlo (eMC) Dose Calculation

  • Seongmoon Jung;Jaeman Son;Hyeongmin Jin;Seonghee Kang;Jong Min Park;Jung-in Kim;Chang Heon Choi
    • Progress in Medical Physics
    • /
    • v.34 no.2
    • /
    • pp.15-22
    • /
    • 2023
  • This study compared the dose calculated using the electron Monte Carlo (eMC) dose calculation algorithm employing the old version (eMC V13.7) of the Varian Eclipse treatment-planning system (TPS) and its newer version (eMC V16.1). The eMC V16.1 was configured using the same beam data as the eMC V13.7. Beam data measured using the VitalBeam linear accelerator were implemented. A box-shaped water phantom (30×30×30 cm3) was generated in the TPS. Consequently, the TPS with eMC V13.7 and eMC V16.1 calculated the dose to the water phantom delivered by electron beams of various energies with a field size of 10×10 cm2. The calculations were repeated while changing the dose-smoothing levels and normalization method. Subsequently, the percentage depth dose and lateral profile of the dose distributions acquired by eMC V13.7 and eMC V16.1 were analyzed. In addition, the dose-volume histogram (DVH) differences between the two versions for the heterogeneous phantom with bone and lung inserted were compared. The doses calculated using eMC V16.1 were similar to those calculated using eMC V13.7 for the homogenous phantoms. However, a DVH difference was observed in the heterogeneous phantom, particularly in the bone material. The dose distribution calculated using eMC V16.1 was comparable to that of eMC V13.7 in the case of homogenous phantoms. The version changes resulted in a different DVH for the heterogeneous phantoms. However, further investigations to assess the DVH differences in patients and experimental validations for eMC V16.1, particularly for heterogeneous geometry, are required.

Association between MIR149 SNPs and Intrafamilial Phenotypic Variations of Charcot-Marie-Tooth Disease Type 1A (샤르코-마리-투스병 1A형(CMT1A)의 가족내 표현형적 이질성과 MIR149 SNP에 대한 연관성 연구)

  • Choi, Yu Jin;Lee, Ah Jin;Nam, Soo Hyun;Choi, Byung-Ok;Chung, Ki Wha
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.800-808
    • /
    • 2019
  • Charcot-Marie-Tooth disease (CMT) is a group of rare peripheral neuropathies characterized by progressive muscle weakness and atrophy and areflexia in the upper and lower extremities. The most common subtype of CMT is CMT1A, which is caused by a tandem duplication of the PMP22 gene in the 17p12 region. Patients with CMT1A show a loose genotype-phenotype correlation, which suggests the existence of secondary genetic or association factors. Recently, polymorphisms of rs71428439 (n.83A>G) and rs2292832 (n.86T>C) in the MIR149 have been reported to be associated with late onset and mild phenotypic CMT1A severity. The aim of this study was to examine the intrafamilial heterogeneities of clinical phenotypes according to the genotypes of these two SNPs in MIR149. For this study, we selected 6 large CMT1A families who showed a wide range of phenotypic variation. This study suggested that both SNPs were related to the onset age and severity in the dominant model. In particular, the AG+GG (n.83A>G) and TC+CC genotypes (n.86T>C) were associated to late onset and mild symptoms. Motor nerve conduction velocity (MNCV) was not related to the MIR149 genotypes. These results were consistent with the previous studies. Therefore, we suggest that the rs71428439 and rs2292832 variants in MIR149 may serve as genetic modifiers of CMT1A intrafamilial phenotypic heterogeneity, as they have a role in the unrelated patients. This is the first study to show an association using large families with variable clinical CMT1A phenotypes. The results will be helpful in the molecular diagnosis and treatment of patients with CMT1A.

Studies on Xylooligosaccharide Analysis Method Standardization using HPLC-UVD in Health Functional Food (건강기능식품에서 HPLC-UVD를 이용한 자일로올리고당 시험법의 표준화 연구)

  • Se-Yun Lee;Hee-Sun Jeong;Kyu-Heon Kim;Mi-Young Lee;Jung-Ho Choi;Jeong-Sun Ahn;Kwang-Il Kwon;Hye-Young Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.72-82
    • /
    • 2024
  • This study aimed to develop a scientifically and systematically standardized xylooligosaccharide analytical method that can be applied to products with various formulations. The analysis method was conducted using HPLC with Cadenza C18 column, involving pre-column derivatization with 1-phenyl-3-methyl-5-pyrazoline (PMP) and UV detection at 254 nm. The xylooligosaccharide content was analyzed by converting xylooligosaccharide into xylose through acid hydrolysis. The pre-treated methods were compared and evaluated by varying sonication time, acid hydrolysis time, and concentration. Optimal equipment conditions were achieved with a mobile phase consisting of 20 mM potassium phosphate buffer (pH 6)-acetonitrile (78:22, v/v) through isocratic elution at a flow rate of 0.5 mL/min (254 nm). Furthermore, we validated the advanced standardized analysis method to support the suitability of the proposed analytical procedure such as specificity, linearity, detection limits (LOD), quantitative limits (LOQ), accuracy, and precision. The standardized analysis method is now in use for monitoring relevant health-functional food products available in the market. Our results have demonstrated that the standardized analysis method is expected to enhance the reliability of quality control for healthy functional foods containing xylooligosaccharide.

Analysis of Couch Sag Using Image Processing of MVCT Images in Tomotherapy (토모테라피에서 MVCT 영상을 이용한 환자 테이블의 처짐 정도의 분석)

  • Park, Ha Ryung;Kim, Yong Ho;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Bae, Jin Suk
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.106-111
    • /
    • 2015
  • In Tomotherapy the couch sags during the treatment due to the weight of the patient. In this study, we developed a simple method to obtain the amount of the sag and the pitch angle of the couch using the image processing technique of MVCT images in Tomotherapy. Using the method we evaluated the sag and pitch of couch for 22 head and neck patients and one craniospinal irradiation (CSI) patient. The sag and the average pitch angle of couch were 0.40~1.54 mm and $0.7^{\circ}$ for head and neck patients, respectively. For head and neck patients, the sag increased as the longitudinal length of the irradiation volume increased and the pitch angle showed no relationship with the longitudinal length. For the CSI patient the sag was 4.97 mm. Using the method the amount of the couch sag could be measured easily and the measured data could be useful in determination of margins considering the table sag error.

Implementation of AAPM's TG-51 Protocol on Co-60 MRI-Guided Radiation Therapy System

  • Cho, Jin Dong;Park, Jong Min;Choi, Chang Heon;Kim, Jung-in;Wu, Hong-Gyun;Park, So-Yeon
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.190-196
    • /
    • 2017
  • For the $ViewRay^{(R)}$ system (ViewRay Inc., Cleveland, OH, USA) which is representative of magnetic resonance (MR) guided radiotherapy machine, it is important to evaluate effectiveness of AAPM's TG-51 protocol and the effect of the magnetic field on absolute dosimetry. In order to measure the absolute dose, MR-compatible chamber and water phantom system manufactured in this study were used. The materials of the water phantom system were plastic of polymethyl methacrylate (PMMA) and non-ferrous materials. Due to the inherent feature of the $ViewRay^{(R)}$, all Co-60 sources are not located at gantry angle of $0^{\circ}$ while being located at gantry angle of $90^{\circ}$. For this reason, absolute dosimetry was performed based on the measurements in solid water phantom (SWP) and water which determine the SWP to water correction factor. For evaluation of output constancy with gantry angle, measurements were made with ionization chamber inserted in cylindrical water-equivalent phantom. For measured doses in water, the values of dose deviation according to a reference dose of 200 cGy for Head 1, Head 2 and Head 3 were -0.27%, -0.45% and -0.22%, respectively. For measured doses in SWP, the values of dose deviation according to a reference dose of 200 cGy for Head 1, Head 2 and Head 3 were -1.91%, -2.07% and -1.84%, respectively. All values of dose measured in SWP tended to be less than those measured in water by -1.63%. With the reference gantry angles of $0^{\circ}$ and $90^{\circ}$, the maximum values of deviation for Head 1, Head 2 and Head 3 were 0.48%, 1.06% and 0.40%, respectively. The measurement agreement is within the range of results obtainable for conventional treatment machines. The low strength of the magnetic field does not affect dose measurements. Using the SWP to water correction factor, absolute doses for $ViewRay^{(R)}$ system can be measured.