• 제목/요약/키워드: PMMA denture base

검색결과 31건 처리시간 0.017초

Thermocycling이 Cobalt-Chromium 합금과 의치상 레진의 결합강도에 미치는 영향 (THE EFFECTS OF THERMOCYCLING ON THE BOND STRENGTH BETWEEN COBALT-CHROMIUM ALLOY AND DENTURE BASE RESIN)

  • 이수연;방몽숙
    • 대한치과보철학회지
    • /
    • 제38권1호
    • /
    • pp.38-49
    • /
    • 2000
  • The purpose of this study was to evaluate the effects of thermocycling on the shear bond strength of Co-Cr alloy to denture base resin. PMMA denture base resin such as heat-cured $Vertex-RS^{(R)}$, self-cured $Vertex-SC^{(R)}$ and 4-META denture base resin such as heat-cured $Meta-Dent^{(R)}$, self-cured $Meta-Fast^{(R)}$ was bonded to Co-Cr alloy. Samples were divided into 3 groups : no thermocycling group as control, thermocycling between $5^{\circ}C\;and\;55^{\circ}C$ with 15 second dwell time as group 1, thermocycling with 1 minute dwell time as group 2. The shear bond strength was measured and the interface between metal and resin was observed by SEM. The results were as follows. 1. The shear bond strength decreased significantly according to thermocycling and dwell time(P<0.001). 2. The bond strength of Co-Cr alloy and 4-META denture base resin was significantly higher than that of Co-Cr alloy and PMMA denture base resin(P<0.001) 3. In SEM, there was no gap in control group, but there was much and large gap in group 1, 2. The longer dwell times, the lower bond strength. PMMA denture base resin had more gap than 4-META denture base resin in the interface. These results revealed that thermocycling decreased the bond strength between Co-Cr alloy and denture base resin and dwell time of thermocycling changed the effect of thermocycling. The results suggested that oral temperature change affect the bond strength of prosthesis.

  • PDF

폴리(메틸 메타아크릴레이트) 입자 크기 및 분자량 제어에 따른 의치상 재료로서의 기계적 물성 변화 (Mechanical Properties of Denture Base Resin through Controlling of Particle Size and Molecular Weight of PMMA)

  • 양경모;정동준
    • 폴리머
    • /
    • 제27권5호
    • /
    • pp.493-501
    • /
    • 2003
  • 의치상 레진 (틀니)의 기본 물질로 사용되는 폴리(메틸 메타아크릴레이트) (PMMA) 입자를 폴리(비닐 알코올) (PVAL)을 안정제로 사용하여 현탁중합법으로 중합하였고, PVAL 농도와 교반속도, 공단량체의 도입에 따른 PMMA의 입자 크기 변화 및 분자량의 변화를 관찰하였다. 또한 합성된 PMMA 수지와 메틸 메타아크릴레이트 단량체를 이용하여 고체/액체 비 (P/L ratio)를 2:1 로 하여 병상물을 제조하고, 일정한 가압성형 조건하에서 제작된 시편으로 수지의 입자 크기 및 분자량에 따른 PMMA에 기초한 틀니용 수지의 기계적 물성 변화를 관찰하였다. 그 결과 평균입자 크기가 100 $\mu$m 이하에서는 분자량이 커질수록 기계적 물성이 높게 나타났으며, 그 이상인 영역에서는 분자량에 상관없이 입자 크기가 증가할수록 기계적 물성의 저하 현상이 관찰되었다. 아울러 중합시 교반속도와 PVAL의 농도를 조절하여 크기와 분자량을 조절 가능하였는데, P/L 부피비가 2인 조건에서 제조된 열경화성 틀니용 수지로 이용되는 입자의 평균크기는 100 $\mu$m 정도가 적절하며, 분자량은 3.0${\times}$$10^{5}$ 전후가 적절함을 알 수 있었다.다.

탄소섬유 첨가에 따른 의치상 레진의 탄성력 관찰 (Study on a Change of Mechanical Property of denture Resin by Carbon Fiber Filler Content)

  • 김호성
    • 대한치과기공학회지
    • /
    • 제36권3호
    • /
    • pp.165-169
    • /
    • 2014
  • Purpose: This study is a mechanical strength supplementation of denture base resin Polymethyl methacrylate (PMMA) is in general use for denture base resin of the partial and full denture, however, The polymerization process of PMMA is not stabilized. Because of compatibility problems, preceding studies were performed, which were enhancing mechanical strength(Camilo Machado 2007),(Ana M. 2008), addition filler to materials property(Ayse Mese, 2008), self curing method(Hiroshi Shimizu, 2008). Methods: The carbon fiber and polyacetal filler, reinforced the mechanical strength for improving the stability of denture base resin were supplemented to the self cured resin. The Modulus of elasticity and the restoring force were calculated by tensile test. Results: The strengths of the heat and self cured resin were respectively decreased and increased, when the filler was supplemented to the denture base resin and the modulus of elasticity of both heat and self cured resin were not increased, when the filler was supplemented to the denture base resin. Conclusion: The restoring forces of self cured resin containing 10% filler were increased, when the filler was supplemented to the denture base resin.

키토산을 첨가한 의치상 재료의 세균 부착에 관한 연구 (ADHERENCE OF ORAL BACTERIA ON CHITOSAN-ADDED DENTURE BASE MATERIALS IN VITRO)

  • 정승환;방몽숙;박하옥
    • 대한치과보철학회지
    • /
    • 제40권5호
    • /
    • pp.525-535
    • /
    • 2002
  • The purposes of this study were to evaluate the adherence of bacteria on various denture base resin materials and effects of chitosan, added to denture base materials on bacterial adherence. PMMA denture base resin such as heat-cured Vertex-RS, self-cured Vertex-SC and 4-META denture base resin such as heat-cured Meta-Dent, self-cured Meta-Fast were used in this study Samples were divided into two groups the denture base resin with chitosan, without chitosan Streptococcus mutans and Lactobacillus casei were used in this study. The surface of samples was observed by SEM. When chitosan was added to M17 and MRS broth, viable cell count of bacteria was reduced. Viable cell count of Streptococcus mutans on the samples decreased as follows : Meta-Dent, Vertex-SC, Meta-Fast, Vertex-RS. Viable cell count of Lactobacillus casei on the samples decreased as follows: Vertex-RS, Meta-Dent, Meta-Fast, Vertex-SC. The resin with chitosan showed lower adherence of bacteria than without chitosan. The images of SEM showed that the surface of the resin with chitosan was rougher than that of without chitosan. These results showed that the denture base resin materials with chitosan have rougher surface than without chitosan, but less bacteria adhered on them.

Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement

  • Han, Sang Yeon;Moon, Yun-Hee;Lee, Jonghyuk
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권5호
    • /
    • pp.251-258
    • /
    • 2020
  • PURPOSE. The bond strengths between resin denture teeth with various compositions and denture base resins including conventional and CAD/CAM purposed materials were evaluated to find influence of each material. MATERIALS AND METHODS. Cylindrical rods (6.0 mm diameter × 8.0 mm length) prepared from pre-polymerized CAD/CAM denture base resin blocks (PMMA Block-pink; Huge Dental Material, Vipi Block-Pink; Vipi Industria) were bonded to the basal surface of resin teeth from three different companies (VITA MFT®; VITA Zahnfabrik, Endura Posterio®; SHOFU Dental, Duracross Physio®; Nissin Dental Products Inc.) using resin cement (Super-Bond C&B; SUN MEDICAL). As a control group, rods from a conventional heat-polymerizing denture base resin (Vertex™ Rapid Simplified; Vertex-Dental B.V. Co.) were attached to the resin teeth using the conventional flasking and curing method. Furthermore, the effect of air abrasion was studied with the highly cross-linked resin teeth (VITA MFT®) groups. The shear bond strengths were measured, and then the fractured surfaces were examined to analyze the mode of failure. RESULTS. The shear bond strengths of the conventional heat-polymerizing PMMA denture resin group and the CAD/CAM denture base resin groups were similar. Air abrasion to VITA MFT® did not improve shear bond strengths. Interfacial failure was the dominant cause of failure for all specimens. CONCLUSION. Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods.

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권3호
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.

CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교 (Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins)

  • 이동형;이준석
    • 구강회복응용과학지
    • /
    • 제36권3호
    • /
    • pp.183-195
    • /
    • 2020
  • 목적: 이 논문의 목적은 CAD/CAM 의치상 레진과 열중합 의치상 레진의 굴곡 강도를 비교해보고, 두께에 따른 굴곡 강도 변화도 비교해보는 것이다. 연구 재료 및 방법: 열중합 의치상 레진은 Lucitone 199® (C-LC)을 사용하였다. 3D printing 의치상 레진으로는 DIOnavi - Denture (P-DO)와 DENTCA - Denture Base II (P-DC)를 사용하였다. 밀링 PMMA 블록으로는 Vipi Block Gum (M-VP)과 M-IVoBase® CAD (M-IV)를 사용하였다. 시편의 최종 규격은 65.0 mm × 12.7 mm × 1.6 mm / 2.0 mm / 2.5 mm였다. 굴곡 강도와 굴곡 탄성율을 측정하기 위해 3점 굽힘 시험을 실시하였다. 그리고 파절된 시편의 단면을 주사전자현미경 (SEM) 을 사용하여 분석하였다. 데이터의 정규성을 확인한 뒤 일원분산분석(one-way ANOVA)을 사용하여 유의 수준 P = 0.05로 설정하여 그룹 간의 차이를 평가한 뒤, 사후 분석을 위해 Tukey HSD test를 시행하였다. 결과: 동일 두께 내에서, P-DO를 제외한 나머지 CAD/CAM 의치상 레진들과 열중합 의치상 레진의 굴곡 강도는 유의한 차이를 나타내었다. M-VP는 열중합 의치상 레진 보다 굴곡 강도가 높게 나타났고, P-DC와 M-IV는 낮은 굴곡 강도를 보였다. 굴곡 탄성률은 M-VP에서 제일 높게 나타났고 C-LC, P-DO, P-DC, M-IV 순으로 낮아졌으며 재료간에 모두 유의한 차이가 나타났다. 두께에 따른 굴곡 강도는, C-LC에서는 2.5 mm가 1.6 mm보다 유의하게 높은 굴곡 강도를 보였고, P-DC, M-VP는 2.5 mm와 2.0 mm에서 1.6 mm보다 유의하게 높은 굴곡 강도가 나타났다. M-IV에서는 두께가 증가할수록 유의한 굴곡 강도 증가가 나타났다. SEM 분석 결과 서로 다른 재료들의 파절된 단면은 각기 다른 양상을 띄었다. 결론: 본 연구에서 사용된 CAD/CAM 의치상 레진의 굴곡 강도는 각 재료의 성분 및 특성에 따라 다양하게 나타났다. CAD/CAM 의치상 레진의 굴곡 강도는 두께가 감소하여도 1.6 mm 이상의 두께에서는 ISO 20795-1:2013에서 제시하는 굴곡 강도보다 높게 나타났다. 하지만 보다 얇은 두께의 의치를 임상적으로 사용하기 위해서는, 더 낮은 두께의 의치상 레진의 다른 특성들에 관한 추가적인 연구가 필요하다.

의치상 수리면 오염원에 따른 수지의 결합강도 (Bond strength of denture base resin repaired according to contamination)

  • 정경풍
    • 대한치과기공학회지
    • /
    • 제25권1호
    • /
    • pp.71-79
    • /
    • 2003
  • The purpose of this study was to investigate bond strength of denture base resin repaired according to contamination. One commercial denture base resin and two different kinds of relines resin were tested; Lusiton 199(denture base resin), Vertex(reline resin) and TokusoRebase(repair resin). The specimens were processed according to the manufacturer's instructions to cured denture base resin(polymethylmethacrylate; PMMA) and reline resin. Bond strengths were examined by use of a three-point transverse flexural strength test. Data were analyzed with two-factor analysis of variance and Duncan's post-hoc test at $\alpha$=0.05. Generally, the bondstrength of heat-cured resin(Lusiton 199) was higher than the other resins. The contaminations produced an decrease in bond strength. Therefore the contamination, such as saliva or water must be avoided during the laboratory repair procedures.

  • PDF

의치상 레진과 이장 레진 간의 결합강도 비교 (Comparison of bond strength between denture base resin and reline resin)

  • 금영희;김부섭
    • 대한치과기공학회지
    • /
    • 제39권3호
    • /
    • pp.161-167
    • /
    • 2017
  • Purpose: We compare the bond strength of heat-cured PMMA of Lucitone 199 and QC-20 and Tokuyama Rebase Resin of self-cured resin, which are widely used and well accepted in clinical practice. In order to test the mechanical bonding and chemical bonding, we will compare the bond strength between EstheShot Bright, Smiletone, Repair and Rebase resins. Methods: The denture base resin used in this study was PMMA heat-cured QC-20 and Lucitone 199, polyamide resin EstheShot Bright, Smiletone. And Two types of self-curing Rapid Repair and Tokuyama Rebase were used as resection resins. To measure the bond strength, the denture specimens were fabricated in the size of $10{\times}64{\times}3.5mm$ as instructed by the manufacturer. A surface treatment agent was applied to the cut surfaces of each denture specimen, and the specimens were placed in a preformed silicone mold, and autoclaved excimer resins were prepared. The bending strength of the fabricated specimens was measured using a universal testing machine (STM-5, United Calibration Co., U.S.A.) to measure the three-point bending strength. Results: In both polycarbonate and polyacetal resin, a special resin surface treatment agent showed higher bonding strength than the resin surface treatment agent(p<0.05). Regardless of the type of surface treatment, polycarbonate showed higher bond strength than polyacetal resin(p<0.05). Conclusion: It is considered desirable to use a special surface treating agent for the thermoplastic denture base resin such as polycarbonate and polyacetal resin.

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권1호
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.