• Title/Summary/Keyword: PMMA Chip

Search Result 16, Processing Time 0.038 seconds

Fabrication of plastic CE (capillary electrophoresis) microchip by hot embossing process (핫 엠보싱 공정을 이용한 플라스틱 CE(capillary electrophoresis) 마이크로 칩의 제작)

  • Cha Nam-Goo;Park Chang-Hwa;Lim Hyun-Woo;Park Jin-Goo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1140-1144
    • /
    • 2005
  • A plastic-based CE (capillary electrophoresis) microchip was fabricated by hot embossing process. A Si mold was made by wet etching process and a PMMA wafer was cut off from 1mm thick PMMA sheet. A micro-channel structure on PMMA substrate was produced by hot embossing process using the Si mold and the PMMA wafer. A vacuum assisted thermal bonding procedure was employed to seal an imprinted PMMA wafer and a blank PMMA wafer. The results of microscopic cross sectional images showed dimensions of channels were well preserved during thermal bonding process. In our procedure, the deformation amount of bonding process was below 1%. The entire fabrication process may be very useful for plastic based microchip systems.

  • PDF

Fabrication of PMMA Micro CE Chip Using IPA Assisted Low-temperature Bonding (IPA 저온 접합법을 이용한 PMMA Micro CE Chip의 제작)

  • Cha, Nam-Goo;Park, Chang-Hwa;Lim, Hyun-Woo;Cho, Min-Soo;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2006
  • This paper reports an improved bonding method using the IPA (isopropyl alcohol) assisted low-temperature bonding process for the PMMA (polymethylmethacrylate) micro CE (capillary electrophoresis) chip. There is a problem about channel deformations during the conventional processes such as thermal bonding and solvent bonding methods. The bonding test using an IPA showed good results without channel deformations over 4 inch PMMA wafer at $60^{\circ}C$ and 1.3 bar for 10 minutes. The mechanism of IPA bonding was attributed to the formation of a small amount of vaporized acetone made from the oxidized IPA which allows to solvent bonding. To verify the usefulness of the IPA assisted low-temperature bonding process, the PMMA micro CE chip which had a $45{\mu}m$ channel height was fabricated by hot embossing process. A functional test of the fabricated CE chip was demonstrated by the separation of fluorescein and dichlorofluorescein. Any leakage of liquids was not observed during the test and the electropherogram result was successfully achieved. An IPA assisted low-temperature bonding process could be an easy and effective way to fabricate the PMMA micro CE chip and would help to increase the yield.

Surface Modification of Polymethyl methacrylate(PMMA) by Laser Surface Treatment for Microfluidic Chip (유체소자 성능향상을 위한 Polymethyl methacrylate(PMMA)의 레이저 표면처리)

  • Shin, Sung-Kwon;Lee, Sang-Don;Lee, Cheon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.334-337
    • /
    • 2007
  • After the advent of micro-Total Analysis Systems(${\mu}-TAS$) based on silicon various polymer for microfluidic chip has been studied. Polymer materials for microfluidic compared with silicon and glass which were traditional materials of a microfluidic chip, have the advantages of economical efficiency simple manufacturing process and wide materials selectivity corresponding to fluids. Surface energy of polymers we, however lower than silicon or glass. To overcome this problem, various surface modification methods have been investigated. The surface modification using laser has the advantage of the simple experiment that only directly irradiated laser beam on the material surface in the air. This work discuss the surface modification of polymethly methacrylate(PMMA) by 4th harmonic Nd:YAG laser (${\lambda}266nm$, pulse) treatment. After the laser treatment, the PMMA surface was investigated using a contact angle measuring instrument. The contact angle was decreased with a increase of the surface oxygen content. This result means the surface energy of PMMA was increased by the laser treatment without changing of its bulk characteristics.

STRUCTURAL MORPHOLOGY AND DIELECTRIC PROPERTIES OF POLYANILINE-EMERALDINE BASE AND POLY METHYL METHACRYLATE THIN FILMS PREPARED BY SPIN COATING METHOD

  • Shekar, B. Chandar;Yeon, Ji;Rhee, Shi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1081-1084
    • /
    • 2003
  • Structural morphology, annealing behavior and dielectric properties of polyaniline-emeraldine base (Pani-EB) and poly methyl methacrylate (PMMA) thin films prepared by spin coating technique have been studied. MIM and MISM structures were used to investigate annealing and dielectric behavior. The XRD and AFM spectrum of as grown and annealed thin films indicates the amorphous nature. The observed amorphous phase, low loss, dielectric behavior and thermal stability even at high temperatures implies the feasibility of utilizing PMMA and Pani-EB thin films as gate dielectric insulator layer in organic thin film transistors which can find application in flat panel display.

  • PDF

A study on PDMS-PMMA Bonding using Silane Primer (실란 프라이머를 이용한 PDMS-PMMA 접착)

  • Kim, Kang-Il;Park, Sin-Wook;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1480-1481
    • /
    • 2008
  • In this paper, we present surface treatments for achieving bonds between PMMA and PDMS substrates. Silane primer is used for the formation of hydroxyl group on PMMA surfaces. The formed hydroxyl groups enhance the bonding strength of PDMS-PMMA substrates without channel clogging and structure deformation. The bonding strength on the different surface treatments (include oxygen plasma, 3-APTES, and corona discharge) is evaluated to find optimal bonding condition. The maximum bonding strength at the optimal surface treatment is over 300 kPa. The surface treatment using silane primer can be used to the bonding process of Micro-TAS and Lab-on-a-Chip.

  • PDF

Investigation of Thermal Fusion Bonding and Separation of PMMA Substrates by using Molecular Dynamics Simulations (분자동역학을 이용한 PMMA 평판의 열접합 및 분리에 대한 연구)

  • Yi, Taeil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.111-116
    • /
    • 2018
  • Thermal fusion bonding is a method to enclose open microchannels fabricated on polymer chips for use in lab-on-a-chip (LOC) devices. Polymethyl methacrylate (PMMA) is utilized in various biomedical-microelectromechanical systems (bio-MEMS) applications, such as medical diagnostic kits, biosensors, and drug delivery systems. These applications utilize PMMAs biochemical compatibility, optical transparency, and mold characteristics. In this paper, we elucidate both the conformational entanglement of PMMA molecules at the contact interfacial regime, and the qualitative nature of the thermal fusion bonding phenomena through systematic molecular dynamics simulations.

Fabrication of Core-Shell Structure of Ni/Au Layer on PMMA Micro-Ball for Flexible Electronics

  • Hong, Sung-Jei;Jeong, Gyu-Wan;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.140-144
    • /
    • 2016
  • In this paper, core-shell structure of nickel/gold (Ni/Au) conductive layer on poly-methyl-methacrylate (PMMA) micro-ball was fabricated and its conduction property was investigated. Firstly, PMMA micro-ball was synthesized by using dispersion polymerization method. Size of the ball was $2.8{\mu}m$ within ${\pm}7%$ deviation, and appropriate elastic deformation of the PMMA micro-ball ranging from 31 to 39% was achieved under 3 kg pressure. Also, 200 nm thick Ni/Au conductive layer was fabricated on the PMMA micro-ball by uniformly depositing with electroless-plating. Adhesion of the conductive layer was optimized with help of surface pre-treatment, and the layer adhered without peeling-off despite of thermal expansion by collision with accelerated electrons. Composite paste containing core-shell structured particles well cured at low temperature of $130^{\circ}C$ while pressing the test chip onto the substrate to make electrical contact, and electrical resistance of the conductive layer showed stable behavior of about $6.0{\Omega}$. Thus, it was known that core-shell structured particle of the Ni/Au conductive layer on PMMA micro-ball was feasible to flexible electronics.