• Title/Summary/Keyword: PMMA(Polymethyl methacrylate)

Search Result 161, Processing Time 0.024 seconds

Results of a Round-Robin Test for the Draft International Standard on FT-IR Gas Analysis of Fire Effluents from a Cone Calorimeter (콘칼로리미터 연소가스 FT-IR 분석을 위한 국제표준 초안의 비교시험 결과분석)

  • Choi, Jung-Min;Park, Kye-Won;Jeong, Jae-Gun
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • The international standard for FT-IR gas analysis of fire effluents in ISO 5660-1 cone calorimeter has been being developed in ISO TC 92. A comparison of the round-robin test of WD 21397 was conducted with six participating laboratories in 2018. The test specimens were PMMA, rigid PU foam board, and PVC flooring. The measurement quantities were the time-to-ignition, peak heat release rate, total heat release, and effective heat of combustion for a cone calorimeter test and peak gas concentration, gas generation, and gas yield for FT-IR gas analysis. No outliers were identified. For the cone calorimeter quantities, the repeatability and reproducibility were 1.5% and 9.8%, respectively. For FT-IR gas analysis, the repeatability and reproducibility was 12.9% and 27.9%, respectively.

Synthesis and Characterization of Red Organic Phosphor for Hybrid LED (Hybrid LED용 적색 유기형광체의 합성 및 특성 연구)

  • Lee, Seung Min;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.48-53
    • /
    • 2017
  • We report the studies on the red organic phosphor by using perylene bisimide derivatives. Even though perylene bisimide derivatives have excellent thermal stability and luminous efficiency, they have low solubility in organic solvents. In this research, modified perylene bisimide derivative, N,N'-Bis(4-bromo-2, 6-diisopropylphenyl)-1, 6, 7, 12-tetraphenoxyperylene-3, 4, 9, 10-tetracarboxyl bisimide (1C), has been prepared by the reaction of phenol with N,N'-Bis(4-bromo-2, 6-diisopropylphenyl)-1, 6, 7, 12-tetrachloroperylene-3, 4, 9, 10-tetracarboxyl bisimide (1B) in presence of DMF, at $70^{\circ}C$. The synthesized (1C) was characterized by using $^1H-NMR$, FT-IR, UV/V is spectroscopy, and TGA. The absorbtion and emission of (1C) was shown at 576 nm and 610 nm in UV/V is spectrum. In TGA thermogram, (1C) showed good thermal stability without significant weight loss to $220^{\circ}C$. And in the solubility analysis, (1C) with phenoxy group showed the good solubility in general organic solvents. The blended films of (1C) with PMMA (polymethyl methacrylate) at different weight % concentration such as 10, 5, 1 weight % have been prepared. The blended film was shown at 616 nm when monitored at 450 nm in PL emission spectra.

Submicron-scale Polymeric Patterns for Tribological Application in MEMS/NEMS

  • Singh R. Arvind;Yoon Eui-Sung;Kim Hong Joon;Kong Hosung;Jeong Hoon Eui;Suh Kahp Y.
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2005
  • Submicron-scale patterns made of polymethyl methacrylate (PMMA) were fabricated on silicon-wafer using a capillarity-directed soft lithographic technique. Polyurethane acrylate (PUA) stamps (Master molds) were used to fabricate the patterns. Patterns with three different aspect ratios were fabricated by varying the holding time. The patterns fabricated were the negative replica of the master mold. The patterns so obtained were investigated for their adhesion and friction properties at nano-scale using AFM. Friction tests were conducted in the range of 0-80 nN. Glass (Borosilicate) balls of diameter 1.25 mm mounted on cantilever (Contact Mode type NPS) were used as tips. Further, micro-friction tests were performed using a ball-on-flat type micro-tribe tester, under reciprocating motion, using a soda lime ball (1 mm diameter) under a normal load of 3,000 mN. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C$) and relative humidity ($45{\pm}5\%$). Results showed that the patterned samples exhibited superior tribological properties when compared to the silicon wafer and non-patterned sample (PMMA thin film) both at the nano and micro-scales, owing to their increased hydrophobicity and reduced real area of contact. In the case of patterns it was observed that their morphology (shape factor and size factor) was decisive in defining the real area of contact.

Synthesis and Characterization of Swallow-Tail Perylene Bisimide as Organic Phosphor for Hybrid LED (Hybrid LED용 유기 형광체로서의 Swallow-Tail Perylene Bisimide 제조 및 특성 연구)

  • Jung, Sung Bong;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.86-92
    • /
    • 2019
  • Although perylene bisimide derivatives have advantages such as excellent thermal stability and high luminance efficiency, they have poor solubility characteristics in organic solvents. In this research, in order to improve the solubility characteristics, we prepared perylene bisimide derivatives (1C) and (2C) with swallow-tail substituted imide, which is known to lead to excellent solubility. The structures and properties of swallow-tail perylene bisimide (1C) and (2C) were analyzed by $^1H-NMR$, FT-IR, UV/Vis spectroscopy, and thermogravimetric analysis (TGA). The maximum absorption wavelengths of (1C) and (2C) in the UV/Vis spectrum were 558 nm and 556 nm, respectively, and the maximum emission wavelengths were 602 nm and 600 nm, respectively. In the TGA, (1C) demonstrated good thermal stability with less than 5 wt% weight loss up to $242^{\circ}C$. In the solubility test, (1C) and (2C) exhibited solubilities of more than 5 wt% in chloroform, ethyl acetate, and dimethylformamide, but not in methanol. When the compounds (1C) and (2C) were mixed with PMMA (polymethyl methacrylate), thin films showed peaks at 679 nm and 677 nm, respectively, in the photoluminescence spectra. (1C) was found to be a possible candidate as red organic phosphor for hybrid LEDs.

Correlation analysis between radiation exposure and the image quality of cone-beam computed tomography in the dental clinical environment

  • Song, Chang-Ho;Yeom, Han-Gyeol;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.283-288
    • /
    • 2022
  • Purpose: This study was conducted to measure the radiation exposure and image quality of various cone-beam computed tomography (CBCT) machines under common clinical conditions and to analyze the correlation between them. Materials and Methods: Seven CBCT machines used frequently in clinical practice were selected. Because each machine has various sizes of fields of view (FOVs), 1 large FOV and 1 small FOV were selected for each machine. Radiation exposure was measured using a dose-area product (DAP) meter. The quality of the CBCT images was analyzed using 8 image quality parameters obtained using a dental volume tomography phantom. For statistical analysis, regression analysis using a generalized linear model was used. Results: Polymethyl-methacrylate (PMMA) noise and modulation transfer function (MTF) 10% showed statistically significant correlations with DAP values, presenting positive and negative correlations, respectively (P<0.05). Image quality parameters other than PMMA noise and MTF 10% did not demonstrate statistically significant correlations with DAP values. Conclusion: As radiation exposure and image quality are not proportionally related in clinically used equipment, it is necessary to evaluate and monitor radiation exposure and image quality separately.

Validating a New Approach to Quantify Posterior Corneal Curvature in Vivo (각막 후면 지형 측정을 위한 새로운 방법의 신뢰도 분석 및 평가)

  • Yoon, Jeong Ho;Avudainayagam, Kodikullam;Avudainayagam, Chitralekha;Swarbrick, Helen A.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.223-232
    • /
    • 2012
  • Purpose: Validating a new research method to determine posterior corneal curvature and asphericity(Q) in vivo, based on measurements of anterior corneal topography and corneal thickness. Methods: Anterior corneal topographic data, derived from the Medmont E300 corneal topographer, and total corneal thickness data measured along the horizontal corneal meridian using the Holden-Payor optical pachometer, were used to calculate the anterior and posterior corneal apical radii of curvature and Q. To calculate accurate total corneal thickness the local radius of anterior corneal curvature, and an exact solution for the relationship between real and apparent thickness were taken into consideration. This method differs from previous approach. An elliptical curve for anterior and posterior cornea were calculated by using best fit algorism of the anterior corneal topographic data and derived coordinates of the posterior cornea respectively. For validation of the calculations of the posterior corneal topography, ten polymethyl methacrylate (PMMA) lenses and right eyes of five adult subjects were examined. Results: The mean absolute accuracy (${\pm}$standard deviation(SD)) of calculated posterior apical radius and Q of ten PMMA lenses was $0.053{\pm}0.044mm$ (95% confidence interval (CI) -0.033 to 0.139), and $0.10{\pm}0.10$ (95% CI -0.10 to 0.31) respectively. The mean absolute repeatability coefficient (${\pm}SD$) of the calculated posterior apical radius and Q of five human eyes was $0.07{\pm}0.06mm$ (95% CI -0.05 to 0.19) and $0.09{\pm}0.07$ (95% CI -0.05 to 0.23), respectively. Conclusions: The result shows that acceptable accuracy in calculations of posterior apical radius and Q was achieved. This new method shows promise for application to the living human cornea.

PMMA MICROSPHERES (ARTECOLL$^{(R)}$) INJECTION FOR NASAL RIDGE AUGMENTATION IN THE ORTHOGNATHIC SURGERY (악교정수술환자에서 폴리메틸메터크릴레이트(아테콜$^{(R)}$) 주입을 통한 융비술)

  • Ok, Yong-Ju;Kim, Myung-Jin;Paeng, Jun-Young;Myoung, Hoon;Hwang, Soon-Jung;Choi, Jin-Young;Lee, Jong-Ho;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.4
    • /
    • pp.329-334
    • /
    • 2005
  • Polymethyl-methacrylate(PMMA; Artecoll$^{(R)}$) microspheres suspended 1 : 3 in a 3.5% collagen solution has been used as an injectable implant for long lasting correction of wrinkles and minor skin defects. The patients with mandibular prognathism have increased necessity for nasal augmentation. Usually these patients usually get an additional rhinoplasty after orthognathic surgery. The purpose of this study is to evaluate the result of PMMA injection for nasal ridge augmentation simultaneously with the orthognathic surgery. PMMAs were injected to the nasal dorsum of 13 patients with mandibular prognathism to augment the nasal ridge at the end of the orthognathic surgery. The cephalometric X-ray and clinical facial photograph were taken at 2, 4 and 6 months after operation. Using S-N line, we calculated the change of soft tisuue on the nasal ridge and also investigated the degree of patients satisfaction at 6 months after operation. Most of the patients were satisfied with their nasal ridge height status from moderate to good degree. The average amount of nasal ridge augmentation was $1.4{\pm}0.5$ mm immediately after operation, $1.2{\pm}0.4$ mm at 2 months after operation. The postoperative nasal ridge height seemed to be remained stable after 2 months. Intraoperative PMMA injection is considered to be simple and effective technique which can be used for the minor augmentation of nasal ridge in the orthognathic patients.

Application of a newly developed software program for image quality assessment in cone-beam computed tomography

  • de Oliveira, Marcus Vinicius Linhares;Santos, Antonio Carvalho;Paulo, Graciano;Campos, Paulo Sergio Flores;Santos, Joana
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.75-86
    • /
    • 2017
  • Purpose: The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. Materials and Methods: A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. Results: The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. Conclusion: This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.

APPLICATION OF A DUAL-ENERGY MONOCHROMATIC XRAY CT ALGORITHM TO POLYCHROMATIC X-RAY CT: A FEASIBILITY STUDY

  • Chang, S.;Lee, H.K.;Cho, G.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.61-70
    • /
    • 2012
  • In this study, a simple post-reconstruction dual-energy computed tomography (CT) method is proposed. A dual-energy CT algorithm for monochromatic x-rays was adopted and applied to the dual-energy CT of polychromatic x-rays by assigning a representative mono-energy. The accuracy of algorithm implementation was tested with mathematical phantoms. To test the sensitivity of this algorithm to the inaccuracy of representative energy value in energy values, a simulation study was performed with mathematical phantom. To represent a polychromatic x-ray energy spectrum with a single-energy, mean energy and equivalent energy were used, and the results were compared. The feasibility of the proposed method was experimentally tested with two different micro-CTs and a test phantom made of polymethyl methacrylate (PMMA), water, and graphite. The dual-energy calculations were carried out with CT images of all possible energy pairs among 40, 50, 60, 70, and 80 kVp. The effective atomic number and the electron density values obtained from the proposed method were compared with theoretical values. The results showed that, except the errors in the effective atomic number of graphite, most of the errors were less than 10 % for both CT scanners, and for the combination of 60 kVp and 70 kVp, errors less than 6.0 % could be achieved with a Polaris 90 CT. The proposed method shows simplicity of calibration, demonstrating its practicality and feasibility for use with a general polychromatic CT.

A Study on the Simulation and DSF Molding of V-groove Type Light Guide for a Backlight Unit (백라이트 유닛용 V-그루브 도광판의 전산모사 및 DSF성형에 관한 비교연구)

  • Cho K. H.;Yoon K. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.282-290
    • /
    • 2005
  • Nowadays, TFT-LCD is widely used as display unit of many digital devices. And, the backlight unit(BLU) is used as a light source of TFT-LCD module. In the backlight unit, the most important component is a light guide, which guides the input light to the TFT-LCD module uniformly. Recently, many researchers have focused on improving the efficiency of BLU by changing the design and structure of a light guide. In the present paper, a series of simulation was performed to find the optimal luminance distribution of emanated light from the given geometry as the first step. From the results of simulations for the light guide with given V-groove pattern, the emanated light from it is mostly affected by the groove angle. In the case of acute angle, about 74 degrees was found as optimal angle to satisfy the restrictions of angular luminance distribution, FWHM, the maximum luminance, etc. However, as far as the average luminance value was concerned, the case of 120 degrees(abtuse angle) was found to be the best while prism films were added to the BLU. As a next step the light guide samples of 74 and 120 degrees were manufactured by DSF method, which was recently proposed by the authors. Of course, most of design parameters were chosen by the aid of simulation results. Finally, the results of average luminance values were compared between the simulation and DSF molded samples.