• 제목/요약/키워드: PMMA(Polymethyl methacrylate)

검색결과 161건 처리시간 0.031초

전사방법을 이용한 폴리머 필름에 내재된 실리콘 나노구조물 어레이 제작 (Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method)

  • 신호철;이동기;조영학
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.62-67
    • /
    • 2016
  • This paper presents a silicon nanostructure array embedded in a polymer film. The silicon nanostructure array was fabricated by using basic microelectromechanical systems (MEMS) processes such as photolithography, reactive ion etching, and anisotropic KOH wet etching. The fabricated silicon nanostructure array was transferred into polymer substrates such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) through the hot-embossing process. In order to determine the transfer conditions under which the silicon nanostructures do not fracture, hot-embossing experiments were performed at various temperatures, pressures, and pressing times. Transfer was successfully achieved with a pressure of 1 MPa and a temperature higher than the transition temperature for the three types of polymer substrates. The transferred silicon nanostructure array was electrically evaluated through measurements with a semiconductor parameter analyzer (SPA).

Improvement of Graphene's Electrical Properties by ICP Cleaning

  • 강사랑;라창호;유원종
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.629-629
    • /
    • 2013
  • Graphene is a carbon based material and it has intriguing features, such as phenomenally strong, thin, flexible, transparent and conductive, those make it attractive for a broad range of applications.Unfortunately, graphene is extremely sensitive to contamination. When we fabricate graphene devices, electrical properties of graphene are altered [1], and the charge carrier mobility drops accordingly by orders of magnitude. This significant impact on electron mobility occurs because any surrounding medium could act as a dominant source of extrinsic scattering, which effectively reduces the mean free path of carriers [2,3]. The dominant contaminant is generated through fabrication stage by polymethyl methacrylate (PMMA) [4], or photo resist (PR). Surface contamination by these residues has long been a critical problem in probing graphene's intrinsic properties. If we clearly solve this problem, we can get highly performed graphene devices. Here, we will report on graphene cleaning process by Induced Coupled Plasma (ICP). We demonstrated how much decomposition of residue impact on improving electrical properties of graphene.

  • PDF

Effect of scattered x-rays on subject contrast and image sharpness

  • Arimura, Hidetaka;Date, Takuji;Morikawa, Kaoru;Kubota, Hideaki;Matsumoto, Masao;Kanamori, Hitoshi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 1999년도 Japanese Journal of Medical Physics
    • /
    • pp.278-281
    • /
    • 1999
  • The purpose of this study is to investigate the effect of the scattered x-rays on the subject contrast and image sharpness for various tube voltages. For the purpose, we measured the scatter-to-primary ratio(SPR) for the tube voltages f 50 to 100kV and obtained the tube voltage dependence of the subject contrast of an aluminum plate in a polymethyl methacrylate(PMMA) phantom. Furthermore, the overall modulation transfer functions(MTFs), which consist of MTFs of a screen-film system and scatter FTMs, were obtained for tube voltages of 50 to 100 kV. The subject contrast decreased with the tube voltage due to that the SPR increased with the tube voltage and that the difference in effective linear attenuation coefficients between the object and its surroundings decreased with the tube voltage. The maximum frequency of the overall MTF decreased from about 2 mm$\^$-1/ to 1 mm$\^$-1/ with the tube voltage increasing from 50 to 100 kV.

  • PDF

탄소나노튜브 첨가에 따른 복합나노섬유의 기계적-광학적 특성 변화

  • 이미현;송우석;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.289-289
    • /
    • 2010
  • 나노섬유는 지름이 수십에서 수백 나노미터(1나노미터=10억분의1m)에 불과한 초극세 물질로 비표면적이 매우 크고[1], 제작이 간편하여, 사용되어지는 고분자의 종류에 따라 에너지 환경 의료 관련 분야에서 전극소재 필터재 피복재 인공 피부등 다양한 분야에서의 활용이 가능하여 전 세계적으로 연구개발이 활발하게 이루어지고 있다. 그러나 그 자체만으로 응용하기에는 그 기계적 전기적 특성의 한계 때문에 응용의 다양성에 제약을 받고 있다. 그러나 그 자체만으로 응용하기에는 그 기계적 열적 전기적 특성을 가진 탄소나노튜브를 첨가한 복합나노섬유에 의해 그 응용영역의 한계를 넓혀가고 있다.[2] 본 연구에서는 전도성 고분자인 polymethyl methacrylate (PMMA)에 multi-walled carbon nanotubes (MWCNTs)를 첨가한 복합나노섬유를 전기방사법(electrospinning method)을 통해서 제조하였다. [2~3] CNTs 첨가농도에 따른 제조된 복합나노섬유의 형상변화와 섬유내의 CNTs 배열상태를 각각 주사전자 현미경(scanning electron microscope: SEM)과 투과전자현미경(transmission electron microscope: TEM)을 이용하여 관찰하였다. 또한, 복합나노섬유의 광학 특성 변화를 CNTs 첨가농도에 따라서 FT-IR과 Raman spectroscopy등을 이용하여 조사하였으며, 나노섬유의 tensile strength의 측정을 통해 CNTs 함량에 따른 기계적 특성 변화를 분석하였다.

  • PDF

다층구조 엑스선 검출기를 이용한 이중에너지 조영제 영상의 물질 구분에 관한 연구 (A Study on the Material Decomposition of Dual-Energy Iodine Image by Using the Multilayer X-ray Detector)

  • 김준우
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권5호
    • /
    • pp.465-471
    • /
    • 2021
  • Dual-energy X-ray imaging (DEI) techniques can provide X-ray images that a certain material is suppressed or emphasized by combining two X-ray images obtained from two different x-ray spectrum. In this paper, a single-shot DEI, which uses stacked two detectors (i.e., multilayer detector), is proposed to reduce the patient dose and increase throughput in angiography. The polymethyl methacrylate (PMMA) and aluminum (Al) were selected as two basis materials for material decomposition, and material-specific images are reconstructed as a vector combination of these two materials. We investigate the contrast and noise performance of material-decomposed images using iodine phantoms with various concentrations and diameters. The single-shot DEI shows comparable performances to the conventional dual-shot DEI. In particular, the single-shot DEI shows edge enhancement in material-decomposed images due to the different spatial-resolution characteristics of upper and lower detectors. This study could be useful for designing the multilayer detector including scintillators and energy-separation filter for angiography purposes.

패턴전사프린팅용 고분자 복제 소재 연구 (A Study on Polymer Replica Materials for Nanotransfer Printing)

  • 강영림;박운익
    • 한국전기전자재료학회논문지
    • /
    • 제34권4호
    • /
    • pp.262-268
    • /
    • 2021
  • For the past several decades, various next-generation patterning methods have been developed to obtain well-designed nano-to-micro structures, such as imprint lithography, nanotransfer printing (nTP), directed self-assembly (DSA), E-beam lithography, and so on. Especially, nTP process has much attention due to its low processing cost, short processing time, and good compatibility with other patterning techniques in achieving the formation of high-resolution functional patterns. To transfer functional patterns onto desirable substrates, the use of soft materials is required for precise replication of master mold. Here, we introduce a simple and practical nTP method to create highly ordered structures using various polymeric replica materials. We found that polymethyl methacrylate (PMMA), polystyrene (PS), and polyvinylpyridine (PVP) are possible candidates for replica materials for reliable duplication of Si master mold based on systematic analysis of pattern visualization. Furthermore, we successfully obtained well-defined metal and oxide nanostructures with functionality on target substrates by using replica patterns, through deposition and transfer process. We expect that the several candidates of replica materials can be exploited for effective nanofabrication of complex electronic devices.

스트레인측정에 의한 응력확대계수 결정 (Determination of Stress Intensity Factors by Strain Measurement)

  • 이억섭;나경찬
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.147-155
    • /
    • 1995
  • Recent experimental studies have been shown that strain gages can be employed to determine either static or dynamic stress intensity factors $K_{I}$ wiht relatively simple experiments. However, it does not usually provide a reliable value of stress intensity factor because of local yielding and limited regions for strain gage placement at the vicinity of the crack tip. This paper attempted to define a valid region and to indicate procedures for locating and orienting the strain gage to determine static toughness $K_{Is}$ accurately form one strain gage readings with respect to varying loadings. The strain gage methods was used for compact tension specimens made of Polycarbonate and PMMA(polymethyl methacrylate). Series expansions of the static and dynamic strain fields are applied. Strain gage orientation and location are then studied to optimize the strain response. Especially, in the dynamic experiment, the specimen employed is an oversized Charpy V-notch specimen which has been modified to provide significant constraint with a large elevation of the flow stress. The impact behavior of the specimen is monitored by placing strain gage near the crack tip. The dynamic toughness $K_{Id}$ is determined from the strain time traces of this gage.e.

  • PDF

Employing GDQ method for exploring undamped vibrational performance of CNT-reinforced porous coupled curved beam

  • Moein A. Ghandehari;Amir R. Masoodi
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.551-565
    • /
    • 2023
  • Coupled porous curved beams, due to their low weight and high flexibility, have many applications in engineering. This study investigates the vibration behavior of coupled porous curved beams in different boundary conditions. The system consists of two curved beams connected by a mid-layer of elastic springs. These beams are made of various materials, such as homogenous steel foam, and composite materials with PMMA (polymethyl methacrylate) and SWCNT (single-walled carbon nanotube) used as the matrix and nanofillers, respectively. To obtain equivalent material properties, the role of mixture (RoM) was employed, followed by the implementation of the porosity function. The system's governing equations were obtained by employing FSDT and Hamilton's law. To investigate thermal vibration, temperature was implemented as a load in the governing equations. The GDQ method was used to solve these equations. To demonstrate the applicability of the GDQ method in calculating the frequencies of the system and the correctness of the developed program, a validation study was conducted. After validation, numerous examples were presented to investigate the behavior of single and coupled curved beams in various material properties and boundary conditions. The results indicate that the frequencies of the curved beams and the system depend highly on the amount of porosity (n) and the distribution pattern. The system frequencies decreased with an increase in the porosity coefficient. The stiffness of the springs had no effect on the first mode frequency but increased frequencies of other modes in a specific range. The frequencies of the system decreased with an increase in environmental temperature.

반코마이신을 함유한 Polymethylmetacrylate 비드를 이용한 만성 골수염의 치험례 (THE USE OF VANCOMYCIN-IMPREGNATED POLYMETHYLMETACTYLATE BEADS FOR THE TREATMENT OF CHRONIC OSTEOMYELITIS)

  • 이형석;박영주;최동주;김미자;장계표;김정래;김선엽;안병근
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권6호
    • /
    • pp.672-676
    • /
    • 2000
  • One of the current treatment methods for chronic osteomyelitis is removal of the infected and necrotic tissue to reduce the bacterial concentration as much as possible. This is performed concomitantly with antibiotic therapy. Chronic osteomyelitis(C.O.) implies chronic ischemia of the diseased bone. Thus, the treatment for C.O. requires high systemic level of antibiotics. In some cases, however, inherent undesirable adverse effects(for example, nephrotoxicity, ototoxicity, and others) may render this course of treatment difficult. Knowing that residual monomers are released from hardened bone cement, installation of antibiotic-impregnated PMMA(polymethyl-methacrylate) beads in situ have been one of treatment methods of C.O. When introduced into the wound, they established an exceedingly high level of local antibiotics for prolonged period without high systemic level of antibiotics. We experienced favorable results with vancomycin-impregnated PMMA beads for the treatment of C.O. of the mandible. So, we report it with literature reviews.

  • PDF

Therapeutic Proton Beam Range Measurement with EBT3 Film and Comparison with Tool for Particle Simulation

  • Lee, Nuri;Kim, Chankyu;Song, Mi Hee;Lee, Se Byeong
    • 한국의학물리학회지:의학물리
    • /
    • 제30권4호
    • /
    • pp.112-119
    • /
    • 2019
  • Purpose: The advantages of ocular proton therapy are that it spares the optic nerve and delivers the minimal dose to normal surrounding tissues. In this study, it developed a solid eye phantom that enabled us to perform quality assurance (QA) to verify the dose and beam range for passive single scattering proton therapy using a single phantom. For this purpose, a new solid eye phantom with a polymethyl-methacrylate (PMMA) wedge was developed using film dosimetry and an ionization chamber. Methods: The typical beam shape used for eye treatment is approximately 3 cm in diameter and the beam range is below 5 cm. Since proton therapy has a problem with beam range uncertainty due to differences in the stopping power of normal tissue, bone, air, etc, the beam range should be confirmed before treatment. A film can be placed on the slope of the phantom to evaluate the Spread-out Bragg Peak based on the water equivalent thickness value of PMMA on the film. In addition, an ionization chamber (Pin-point, PTW 31014) can be inserted into a hole in the phantom to measure the absolute dose. Results: The eye phantom was used for independent patient-specific QA. The differences in the output and beam range between the measurement and the planned treatment were less than 1.5% and 0.1 cm, respectively. Conclusions: An eye phantom was developed and the performance was successfully validated. The phantom can be employed to verify the output and beam range for ocular proton therapy.