• Title/Summary/Keyword: PMIP4

Search Result 7, Processing Time 0.024 seconds

Partial Bicasting with Buffering for Proxy Mobile IPv6 Handover in Wireless Networks

  • Kim, Ji-In;Koh, Seok-Joo
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.627-634
    • /
    • 2011
  • This paper addresses the Proxy Mobile IPv6 (PMIP) handover using bicasting in mobile/wireless networks. The bicasting scheme can be used to support the PMIP handover, which tends to waste the network resources of wireless links and incurs data losses during handover. We propose an enhanced scheme of PMIP handover, called the partial bicasting with buffering for PMIP (PBB-PMIP). In the PBB-PMIP handover, the bicasting is performed in the "partial" region between the Local Mobility Anchor (LMA) and the Mobile Access Gateway (MAG), when a mobile node is in the handover area. The data packets are buffered at the new MAG during handover to reduce data losses and are then forwarded to mobile nodes after handover. By ns-2 simulations, the proposed PBB-PMIP scheme is compared with the existing schemes of PMIP and PMIP with bicasting. The proposed scheme can benefit from the reduction of handover delay and packet loss, and the effective use of the network resources of wireless links, as compared to the existing handover schemes.

(Technical Note) Introduction of PMIP4 Experimental Design for Simulating Quaternary Climates ((기술노트) PMIP4의 제4기 기후 재현 실험 소개)

  • Sang-Yoon Jun;Seong-Joong Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.49-58
    • /
    • 2021
  • In the Paleoclimate Modeling Intercomparison Project phase 4 (PMIP4), various experiments for quaternary climatic change are being carried out along with the Coupled Model Intercomparison Project phase 6 (CMIP6). With the CMIP6 preindustrial climate experiment (piControl), the equilibrium climate simulations of 6 ka Holocene experiment (midHolocene), 21 ka Last Glacial Maximum experiment (lgm), and 127 ka Last Interglacial experiment (lig127k) experiment, and transient climate simulations of 850-1849 Common Era Last Millennium experiment (past1000), 21-9 ka last deglaciation, and 140-127 ka penultimate deglaciation experiment have been carried out under PMIP4 protocols by several modeling groups. In this technical note, important physical parameters and boundary conditions of these Tier 1 experiments and a list of additional Tier 2 and 3 experiments are summarized.

A Novel Mobility Support Scheme based on Proxy-Mobile IP in MPLS networks (MPLS 네트워크에서 PMIP 기반의 이동성 지원 방안)

  • Lim, Tae-Hyong;Lee, Sung-Kuen;Park, Jin-Woo
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.15-21
    • /
    • 2009
  • Proxy Mobile IP in IETF is a network-based mobility management scheme to solve the problem of host-based mobility management scheme, Mobile IP. PMIP shows the better performance in the aspect of mobility, but PMIP, as a legacy of Mobile IP based on "best effort service", lacks of consideration of QoS. In this thesis, a novel mobility support scheme is proposed for mobility and QoS support based on PMIP in MPLS networks.

  • PDF

PMIP-based Distributed Mobility Management for Tactical Network (전술 기동망의 이동성 지원을 위한 PMIP기반 분산 이동성 관리 적용방안)

  • Sun, Kyoungjae;Kim, Younghan;Noh, Hongjun;Park, Hyungwon;Han, Myounghun;Kwon, Daehoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.654-666
    • /
    • 2019
  • The tactical network has several different characteristics compared with commercial internet network such as hierarchical topology, dynamic topology changing and wireless link based connectivity. For considering IP mobility management in the tactical network, current mobility management using Mobile IP(MIP) is not suitable with some reasons such as non-optimal routing paths and single point of failure. Proxy Mobile IP(PMIP) which supporting network-based mobility in hierarchical manner can provide optimal routing path in the tactical network environment, but centralized anchor is still remained a threat to the stability of the tactical network which changes its topology dynamically. In this paper, we propose PMIP-based distributed mobility management for the tactical network environment. From our design, routing paths are always configured in optimized way, as well as path is recovered quickly when the mobility anchor of user is failed. From numerical analysis, comparing to other mobility scheme, result shows that the proposed scheme can reduce packet transmission cost and latency in tactical network model.

Simulation of Past 6000-Year Climate by Using the Earth System Model of Intermediate Complexity LOVECLIM (중간복잡도 지구시스템모델 LOVECLIM을 이용한 과거 6천년 기후 변화 모의)

  • Jun, Sang-Yoon
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.87-103
    • /
    • 2019
  • This study introduces the overall characteristics of LOVECLIM version 1.3, the earth system model of intermediate complexity (EMIC), including the installation and operation processes by conducting two kinds of past climate simulation. First climate simulation is the equilibrium experiment during the mid-Holocene (6,000 BP), when orbital parameters were different compared to those at present. The overall accuracy of simulated global atmospheric fields by LOVECLIM is relatively lower than that in Coupled Model Intercomparison Project phase 5 (CMIP5) and Paleoclimate modelling Intercomparison Project phase 3 (PMIP3) simulations. However, surface temperature over the globe, the 800 hPa meridional wind over the mid-latitude coastal region, and the 200 hPa zonal wind from LOVECLIM show similar spatial distribution to those multi-model mean of CMIP5/PMIP3 climate models. Second one is the transient climate experiment from mid-Holocene to present. LOVECLIM well captures the major differences in surface temperature between preindustrial and mid-Holocene simulations by CMIP5/PMIP3 multi-model mean, even though it was performed with short integration time (i.e., about four days in a single CPU environment). In this way, although the earth system model of intermediate complexity has a limit due to its relatively low accuracy, it can be a very useful tool in the specific research area such as paleoclimate.

Mobile Oriented Future Internet (MOFI): OpenFlow-based Implementation and Testbed Experimentation over KOREN (모바일 중심 미래 인터넷: OpenFlow 기반 구현 및 KOREN 테스트베드 실험)

  • Kim, Ji-In;Jung, Heeyoung;Koh, Seok-Joo
    • Journal of KIISE:Information Networking
    • /
    • v.41 no.4
    • /
    • pp.167-176
    • /
    • 2014
  • In this paper, we discuss the implementation and experimentations of a new future Internet architecture for mobile-oriented environments, named Mobile Oriented Future Internet (MOFI). The MOFI architecture is featured by the host identifier and local locator for identifier-locator separation, Query-First Data Delivery (QFDD), and Distributed Mapping System (DMS) for identifier-locator mapping control. In the existing study on MOFI, we examined the intra-domain mobility control, the implementation of MOFI over Linux platform, and the performance analysis over the small-scale testbed. In this paper, we describe how to implement the MOFI architecture for inter-domain mobility control by using the OpenFlow and Click Modular Router platform. From the experimentations over the KOREN testbed, we can see that the MOFI scheme can give better performance than the existing Proxy Mobile IP scheme.

Arctic Climate Change for the Last Glacial Maximum Derived from PMIP2 Coupled Model Results (제2차 고기후 모델링 비교 프로그램 시뮬레이션 자료를 이용한 마지막 최대빙하기의 북극 기후변화 연구)

  • Kim, Seong-Joong;Woo, Eun-Jin
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.31-50
    • /
    • 2010
  • The Arctic climate change for the Last Glacial Maximum(LGM) occurred at 21,000 years ago (21ka) was investigated using simulation results of atmosphere-ocean coupled models from the second phase of the Paleoclimate Modelling Intercomparison Program(PMIP2). In the analysis, we used seven models, the NCAR CCSM of USA, ECHAM3-MPIOM of German Max-Planxk Institute, HadCM3M2 of UK Met Office, IPSL-CM4 of France Laplace Institute, CNRM-CM3 of France Meteorological Institute, MIROC3.2 of Japan CCSR at University of Tokyo, and FGOALS of China Institute of Atmospheric Physics. All the seven models reproduces the Arctic climate features found in the present climate at 0ka(pre-industrial time) in a reasonable degree in comparison to observations. During the LGM, the atmospheric $CO_2$ concentration and other greenhouse gases were reduced, the ice sheets were expanded over North America and northern Europe, the sea level was lowered by about 120m, and orbital parameters were slightly different. These boundary conditions were implemented to simulated LGM climate. With the implemented LGM conditions, the biggest temperature reduction by more than $24^{\circ}C$ is found over North America and northern Europe owing to ice albedo feedback and the change in lapse rate by high elevation. Besides, the expansion of ice sheets leads to the marked temperature reduction by more then $10^{\circ}C$ over the Arctic Ocean. The temperature reduction in northern winter is larger than in summer around the Arctic and the annual mean temperature is reduced by about $14^{\circ}C$. Compared to low mid-latitudes, the temperature reduction is much larger in high northern altitudes in the LGM. This results mirror the larger warming around the Artic in recent century. We could draw some information for the future under global warming from the knowledge of the LGM.