Browse > Article
http://dx.doi.org/10.14191/Atmos.2019.29.1.087

Simulation of Past 6000-Year Climate by Using the Earth System Model of Intermediate Complexity LOVECLIM  

Jun, Sang-Yoon (Unit of Arctic Sea-ice Prediction, Korea Polar Research Institute)
Publication Information
Atmosphere / v.29, no.1, 2019 , pp. 87-103 More about this Journal
Abstract
This study introduces the overall characteristics of LOVECLIM version 1.3, the earth system model of intermediate complexity (EMIC), including the installation and operation processes by conducting two kinds of past climate simulation. First climate simulation is the equilibrium experiment during the mid-Holocene (6,000 BP), when orbital parameters were different compared to those at present. The overall accuracy of simulated global atmospheric fields by LOVECLIM is relatively lower than that in Coupled Model Intercomparison Project phase 5 (CMIP5) and Paleoclimate modelling Intercomparison Project phase 3 (PMIP3) simulations. However, surface temperature over the globe, the 800 hPa meridional wind over the mid-latitude coastal region, and the 200 hPa zonal wind from LOVECLIM show similar spatial distribution to those multi-model mean of CMIP5/PMIP3 climate models. Second one is the transient climate experiment from mid-Holocene to present. LOVECLIM well captures the major differences in surface temperature between preindustrial and mid-Holocene simulations by CMIP5/PMIP3 multi-model mean, even though it was performed with short integration time (i.e., about four days in a single CPU environment). In this way, although the earth system model of intermediate complexity has a limit due to its relatively low accuracy, it can be a very useful tool in the specific research area such as paleoclimate.
Keywords
EMIC; LOVECLIM; mid-Holocene; paleoclimate modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Claussen, M., and Coauthors, 2002: Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim. Dynam., 18, 579-586.   DOI
2 Eby, M., and Coauthors, 2013: Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Clim. Past, 9, 1111-1140, doi:10.5194/cp-9-1111-2013.   DOI
3 Fischer, N., and J. H. Jungclaus, 2011: Evolution of the seasonal temperature cycle in a transient Holocene simulation: orbital forcing and sea-ice. Clim. Past., 7, 1139-1148, doi:10.5194/cp-7-1139-2011.   DOI
4 Funder, S., and Coauthors, 2011: A 10,000-Year Record of Arctic Ocean Sea-Ice Variability-View from the Beach. Science, 333, 747-750, doi:10.1126/science.1202760.   DOI
5 Gent, P. R., and J. C. Mcwilliams, 1990: Isopycnal Mixing in Ocean Circulation Models. J. Phys. Oceanogr., 20, 150-155.   DOI
6 Goosse, H., and T. Fichefet, 1999: Importance of ice-ocean interactions for the global ocean circulation: A model study. J. Geophys. Res. Oceans, 104, 23337-23355.   DOI
7 Goosse, H., and Coauthors, 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci. Model Dev., 3, 603-633, doi:10.5194/gmd-3-603-2010.   DOI
8 Held, I. M., and M. J. Suarez, 1978: A Two-Level Primitive Equation Atmospheric Model Designed for Climatic Sensitivity Experiments. J. Atmos. Sci., 35, 206-229.   DOI
9 Hewitt, C. D., and J. F. B. Mitchell, 1996: GCM Simulations of the Climate of 6 kyr BP: Mean Changes and Interdecadal Variability. J. Climate, 9, 3505-3529.   DOI
10 Huybrechts, P., 2002: Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Sci. Rev., 21, 203-231.   DOI
11 Jacob, R., C. Schafer, I. Foster, M. Tobis, and J. Anderson, 2001: Computational Design and Performance of the Fast Ocean Atmosphere Model, Version One. Computational Science - ICCS 2001. In V. N. Alexandrov et al. Ed., ICCS 2001, Springer-Verlag, Berlin Heidelberg, 175-184.
12 Kageyama, M., and Coauthors, 2018: The PMIP4 contribution to CMIP6 - Part 1: Overview and over-arching analysis plan. Geosci. Model Dev., 11, 1033-1057, doi:10.5194/gmd-11-1033-2018.   DOI
13 Kohfeld, K. E., and S. P. Harrison, 2000: How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quaternary Sci. Rev., 19, 321-346.   DOI
14 Liu, Z., and Coauthors, 2014: The Holocene temperature conundrum. Proc. Natl. Acad. Sci., 111, E3501-E3505, doi:10.1073/pnas.1407229111.   DOI
15 Lorenz, S. J., and G. Lohmann, 2004: Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene. Clim. Dynam., 23, 727-743.   DOI
16 Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851-875.   DOI
17 Menviel, L., A. Timmermann, A. Mouchet, and O. Timm, 2008: Meridional reorganizations of marine and terrestrial productivity during Heinrich events. Paleoceanography, 23, PA1203.   DOI
18 IPCC, 2014: Climate Change 2013 - The Physical Science Basis. Cambridge University Press, 1535 pp.
19 Nikolova, I., Q. Yin, A. Berger, U. K. Singh, and M. P. Karami, 2013: The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3. Clim. Past, 9, 1789-1806, doi:10.5194/cp-9-1789-2013.   DOI
20 Opsteegh, J. D., R. J. Haarsma, F. M. Selten, and A. Kattenberg, 1998: ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus A, 50, 348-367.   DOI
21 Bretagnon, P., 1982: Theory for the motion of all the planets - The VSOP82 solution. Astron. Astrophys., 114, 278-288.
22 Berger, A. L., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 2362-2367.   DOI
23 Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Clim. Past, 3, 261-277.   DOI
24 Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change, 2, 417-424.   DOI
25 Brovkin, V., A. Ganopolski, and Y. Svirezhev, 1997: A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol. Model., 101, 251-261.   DOI
26 Caley, T., D. M. Roche, and H. Renssen, 2014: Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model. Nat. Commun., 5, 5371, doi:10.1038/ncomms6371.   DOI
27 Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183-7192.   DOI
28 Renssen, H., H. Goosse, and R. Muscheler, 2006: Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Clim. Past, 2, 79-90.   DOI
29 Smith, R. S., 2012: The FAMOUS climate model (versions XFXWB and XFHCC): description update to version XDBUA. Geosci. Model Dev., 5, 269-276, doi:10.5194/gmd-5-269-2012.   DOI
30 Sundaram, S., Q. Z. Yin, A. Berger, and H. Muri, 2012: Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago. Clim. Dynam., 39, 1093-1105, doi:10.1007/s00382-011-1213-z.   DOI
31 Yin, Q., A. Berger, E. Driesschaert, H. Goosse, M. F. Loutre, and M. Crucifix, 2008: The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago. Clim. Past, 4, 79-90.   DOI
32 Chikamoto, M. O., L. Menviel, A. Abe-Ouchi, R. Ohgaito, A. Timmermann, Y. Okazaki, N. Harada, A. Oka, and A. Mouchet, 2012: Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models. Deep-Sea Res. Pt. II, 61, 114-126, doi:10.1016/j.dsr2.2011.12.002.
33 Chou, C., and J. D. Neelin, 1996: Linearization of a longwave radiation scheme for intermediate tropical atmospheric models. J. Geophys. Res. Atmos., 101, 15129-15145.   DOI
34 Timmermann, A., T. Friedrich, O. E. Timm, M. O. Chikamoto, A. Abe-Ouchi, and A. Ganopolski, 2013: Modeling Obliquity and CO2 Effects on Southern Hemisphere Climate during the Past 408 ka. J. Climate, 27, 1863-1875, doi:10.1175/JCLI-D-13-00311.1.   DOI
35 Wanner, H., and Coauthors, 2008: Mid- to Late Holocene climate change: an overview. Quaternary Sci. Rev., 27, 1791-1828.   DOI
36 Weber, M. E., and Coauthors, 2014: Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature, 510, 134-138, doi:10.1038/nature13397.   DOI