• Title/Summary/Keyword: PM2.5 concentration

Search Result 2,636, Processing Time 0.031 seconds

Pilot Study for Difference of Secondhand Smoke Exposure at Smoking and Non-smoking Nightclubs (흡연과 금연 나이트클럽의 간접흡연 노출의 차이에 대한 탐색연구)

  • Guak, Sooyoung;Lee, Boram;Xu, Siyu;Lee, Kiyoung;Lee, Dohoon
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2014
  • Objectives: This pilot study assessed secondhand smoke (SHS) exposure in smoking and non-smoking nightclubs in Seoul, Korea by measuring the concentration of particulate matter smaller than $2.5{\mu}m$ ($PM_{2.5}$). Methods: This comparative study was conducted in three nightclubs in Seoul. While one non-smoking nightclub was measured on weekdays and weekends, different smoking nightclubs were measured on weekdays and weekends. The concentration of $PM_{2.5}$ was observed using a real-time monitor over an average of three hours. The number of people in the clubs was also estimated. Settled dust was collected in a smoking and a non-smoking nightclub and analyzed for NNK concentration. Results: The $PM_{2.5}$ concentration in the smoking nightclubs was higher than those found in the non-smoking nightclub by 26 times on weekdays and three times on weekends. Indoor $PM_{2.5}$ concentration was correlated with the number of people in the smoking nightclubs. Relatively high $PM_{2.5}$ concentration was observed in the non-smoking nightclub on weekends. NNK concentration in the smoking nightclub was 7 times higer than in the non-smoking nightclub. Conclusion: Smoking in nightclubs caused high $PM_{2.5}$ concentration. Although the non-smoking nightclub had a lower $PM_{2.5}$ concentration, $PM_{2.5}$ concentration on weekends was higher due to the smoking room. Complete prohibition of smoking in nightclubs can protect patrons from secondhand smoke exposure.

A Study on Spatial Differences in PM2.5 Concentrations According to Synoptic Meteorological Distribution (종관 기상 분포에 따른 PM2.5 농도의 공간적 차이에 관한 연구)

  • Da Eun Chae;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.999-1012
    • /
    • 2022
  • To investigate the reason for the spatial difference in PM2.5 (Particulate Matter, < 2.5 ㎛) concentration despite a similar synoptic pattern, a synoptic analysis was performed. The data used for this study were the daily average PM2.5 concentration and meteorological data observed from 2016 to 2020 in Busan and Seoul metropolitan areas. Synoptic pressure patterns associated with high PM2.5 concentration episodes (greater than 35 ㎍/m3) were analyzed using K-means cluster analysis, based on the 900 hPa geopotential height of NCEP (National Centers for Environmental Prediction) FNL (Final analysis) data. The analysis identified three sub-groups related to high concentrations occurring only in Busan and Seoul metropolitan areas. Although the synoptic patterns of high PM2.5 concentration episodes that occur independently in Busan and Seoul metropolitan areas were similar, there was a difference in the intensity of pressure gradient and its direction, which tends to be an important factor determining the movement time of pollutants. The spatial difference in PM2.5 concentration in the Korean Peninsula is due to the difference and direction of the atmospheric pressure gradient that develops from southwest to northeast direction.

Impact of Yellow Dust Transport from Gobi Desert on Fractional Ratio and Correlations of Temporal PM10, PM2.5, PM1 at Gangneung City in Fall (고비사막으로부터 황사수송이 가을에 강릉시의 시간별 PM10, PM2.5, PM1 간의 농도차비와 상관관계에 미치는 영향)

  • Lee, Mi-Sook;Chung, Jin-Do
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • Hourly concentrations of $PM_1$, $PM_{2.5}$ and $PM_{10}$, were investigated at Gangneung city in the Korean east coast on 0000LST October 26~1800LST October 29, 2003. Before the intrusion of Yellow dust from Gobi Desert, $PM_{10}$($PM_{2.5}$, $PM_1$) concentration was generally low, more or less than 20 (10, 5) ${\mu}g/m^3$, and higher PM concentration was found at 0900LST at the beginning time of office hour and their maximum ones at 1700LST around its ending time. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$($PM_{2.5}$ and $PM_1$, and $PM_{10}$ and $PM_1$) was very high with 0.90(0.99, 0.84), and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.37~3.39(0.23~0.54), respectively. It implied that local $PM_{10}$ concentration could be greatly affected by particulate matters of sizes larger than $2.5{\mu}m$, and $PM_{2.5}$ concentration could be by particulate matters of sizes smaller than $2.5{\mu}m$. During the dust intrusion, maximum concentration of $PM_{10}$($PM_{2.5}$, $PM_1$) reached 154.57(93.19, 76.05) ${\mu}g/m^3$ with 3.8(3.4, 14.1) times higher concentration than before the dust intrusion. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$(vice verse, $PM_{2.5}$, $PM_1$) was almost perfect high with 0.98(1.00, 0.97) and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 0.48~1.25(0.16~0.37), local $PM_{10}$ concentration could be major affected by particulates smaller than both $2.5{\mu}m$ and $1{\mu}m$ (fine particulate), opposite to ones before the dust intrusion. After the ending of dust intrusion, as its coefficient of 0.23(0.81, - 0.36) was very low, except the case of $PM_{2.5}$ and $PM_1$ and $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.13~1.91(0.29~1.90), concentrations of coarse particulates larger than $2.5{\mu}m$ greatly contributed to $PM_{10}$ concentration, again. For a whole period, as the correlation coefficients of $PM_{10}$, $PM_{2.5}$, $PM_1$ were very high with 0.94, 1.00 and 0.92, reliable regression equations among PM concentrations were suggested.

Determination of Bioconcentration Factor on BPMC and Carbaryl in Carassius auratus(goldfish) (Carassius auratus(goldfish)를 이용한 BPMC와 Carbaryl의 생물농축계수의 측정)

  • 박선열;민경진;강회양
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 1994
  • Bioconcentration Factor (BCF) is known as important criteria for ecotoxicology on hazardous chemicals. But there is no standard method for determining BCF and reported BCFs were slightly different in accordance with authors. This study was performed with aims to determine BCFs on BPMC and Carbaryl. Carassius auratus(goldfish) be chosen as test organism and test period were 3-day, 5-day and 10-day. Extract solvents were n-hexane and acetonitrile. GC-ECD was used to detecting carbamates. The obtained results were as follows: 1. It was possible to determine short term BCF$_s$ of Carbaryl or BPMC through relatively simple procedure. 2. BCF$_3$ of Carbaryl in concentration of 1, 2, 5, 10 ppm were 0.34 $\pm$ 0.06, 0.18 $\pm$ 0.02, 0.10 $\pm$ 0.01, 0.06 $\pm$ 0.01 respectively. BCF$_5$ of Carbaryl were 0.34 $\pm$ 0.05, 0.18 $\pm$ 0.02, 0.13 $\pm$ 0.01 and 0.07 $\pm$ 0.01, BCF$_{10}3$ of Carbaryl were 0.45 $\pm$ 0.05, 0.27 $\pm$ 0.02, 0.16 $\pm$ 0.02 and 0.09 $\pm$ 0.01. BCF$_3$ of BPMC in concentration of 1, 2, 5 ppm were 4.66 $\pm$ 0.17, 2.64 $\pm$ 0.49, 1.88 $\pm$ 0.24 respectively. BCF$_5$ of BPMC were 4.09 $\pm$ 0.50, 2.42 $\pm$ 0.37 and 1.83 $\pm$ 0.15. 3. BCF$_s$ of BPMC were decreased as increasing concentration. However, BPMC concentration in fish were increased in contrast to BCF. But more concentrated BPMC was found in fish 3-day test than found concentration in fish 5-day test. 4. Same trend appeared in Carbaryl. BCF$_s$ of Carbaryl were decreased as increasing concentration and prolonging test period. But found Carbaryl concentration in fish were increased. 5. BCF$_s$ of BPMC were higher than that of Carbaryl by 10 times, in spite of the physicochemical properties of the two carbamates were similar to each other. Further study is recommended to find out the reason of the difference.

  • PDF

Regional Characteristics of Particle Size Distribution of PM10 (미세먼지 입경농도 분포의 지역별 특성)

  • Lee, Yong-Ki;Lee, Ki-Jong;Lee, Jae-Seong;Shin, Eun-Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.666-674
    • /
    • 2012
  • The purpose of this study is to propose management strategies to lower the level of $PM_{10}$ concentration. First, this study analyzes the characteristics of particle sizes in three different areas, the residential, the roadside, and the industrial areas. Second, it has examined the size of particles which can influence on the increase of $PM_{10}$ concentration level. The distribution of particle size for $PM_{10}$ concentration was not different by regions. The highest portion in the observed $PM_{10}$ is near $0.3{\mu}m$. In addition, both near $2.5{\mu}m$ and near $5.0{\mu}m$ are found higher in portion. The fractions of $PM_{1.0}$ and $PM_{2.5}$ in $PM_{10}$ are 68.2% and 75.8% respectively. The fraction of $PM_{1.0}$ in $PM_{2.5}$ is 89.8%. The particle diameters contributed to the increase of $PM_{10}$ concentration are different by regions. In the residential area, the sizes of near $0.6{\mu}m$ and near $3.3{\mu}m$ particles are found to be the cause for the increase of $PM_{10}$ concentration level. However the particle sizes for the increase of $PM_{10}$ concentration level are $0.8{\mu}m$ and $0.5{\mu}m$ in roadside and industrial area respectively. Therefore, fine particles are found as the key factors to raise $PM_{10}$ concentration level in the two areas, while both fine and coarse particles are in the residential areas. When examined the $PM_{10}$ concentration level change, it was categorized by two different time zones, the high concentration level time and the lower concentration time. In high concentration time, the $PM_{10}$ concentration has increased in the morning in the residential and roadside areas. On the contrary, the level has increased in the evening in the industrial area. In low concentration time, the level of $PM_{10}$ concentration in the roadside area is significantly higher in the morning than the concentration level of other times. There is no significantly different concentration level found in the both residential and industrial areas throughout the day.

Effect of living room air purifier on reducing PM2.5 in living room and bedroom (거실의 공기청정기가 거실과 침실의 초미세먼지 농도 저감에 미치는 영향)

  • Ji, Jun-Ho;Joo, Sang-Woo
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.107-114
    • /
    • 2021
  • In this study, the effect of the air purifier located in the living room on the reduction of PM2.5 concentration in the living room and bedroom was investigated. Measurements were carried out in real-life for about 2 weeks in a Korean apartment building where a 3-person household had lived and the exclusive private area was 84.9 m2. When the air purifier in the living room was operating, the change in PM2.5 concentration was measured when the door to the bedroom connected to the living room was opened and closed. In the case of living with the bedroom door open, the average PM2.5 concentrations in the living room and bedroom were almost the same. When living with the bedroom door closed, the average PM2.5 in the living room was higher than in the bedroom. The ventilation and cooking effects in the living room mainly affected the PM2.5 concentration in the living room. Only one air purifier in the living room was able to keep the PM2.5 concentration in the living room and bedroom low.

Characteristics of Metallic and Ionic Elements Concentration in PM10 at Guducsan in Busan (부산 구덕산 미세먼지의 금속성분 및 이온성분 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.715-726
    • /
    • 2016
  • This study investigates the characteristics of metallic and ionic elements concentration, concentration according to transport path, and factor analysis in $PM_{10}$ at Guducsan in Busan in the springtime of 2015. $PM_{10}$ concentration in Guducsan and Gwaebeopdong were $59.5{\pm}9.04{\mu}g/m^3$ and $87.5{\pm}20.2{\mu}g/m^3$, respectively. Contribution rate of water-soluble ions and secondary ion in $PM_{10}$ concentration in Guducsan were 37.0% and 27.8% respectively. [$NO_3{^-}/SO{_4}^{2-}$] ratio and contribution rate of sea salt of $PM_{10}$ in Guducsan and Gwaebeopdong were 0.91 and 1.12, 7.0% and 5.3%, respectively. The results of the backward trajectory analysis indicates that $PM_{10}$ concentration, total inorganic water-soluble ions and total secondary ions were high when the air parcels moved from Sandong region in China than non-Sandong and northen China to Busan area. The results of the factor analysis at Guducsan indicates that factor 1 was anthropogenic source effects such as automobile emissions and industrial combustion processes, factor 2 was marine sources such as sea salts from sea, and factor 3 was soil component sources.

Characteristics of PM10 and PM2.5 Concentrations at Subway Stations in Busan for 3 years (2015~2017) (부산지역 지하역사의 최근 3년간(2015~2017년) PM10과 PM2.5 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.28 no.7
    • /
    • pp.581-594
    • /
    • 2019
  • This research investigated the characteristics of $PM_{10}$ and $PM_{2.5}$ concentrations at the main subway stations in Busan. Annual mean $PM_{10}$ concentrations at the Seomyeon 1- waiting room and platform were $51.3{\mu}g/m^3$ and $47.5{\mu}g/m^3$, respectively, and the annual $PM_{2.5}$ concentration at the Seomyeon 1- platform was $28.8{\mu}g/m^3$. $PM_{2.5}$/$PM_{10}$ ratio at Seomyeon 1-platform and Dongnae station were 0.58 and 0.53, respectively. Diurnal variation of $PM_{10}$ concentration at subway stations in Busan was categorized into four types, depending on the number of peaks and the times at which the peaks occurred. Unlike the areas outside of the subway stations which reported maximum $PM_{10}$ concentration mostly in spring across the entire locations, the interiors of the subway stations reported the maximum $PM_{10}$ concentration in spring, winter, and even summer, depending on their location. $PM_{10}$ concentration was highest on Saturday and lowest on Sunday. The numbers of days when $PM_{10}$ concentration exceeded $100{\mu}g/m^3$ and $80{\mu}g/m^3$ per day over the last three years at the subway stations in Busan were 36 and 239, respectively. The findings of this research are expected to enhace the understanding of the fine particle characteristics at subway stations in Busan and be useful for developing a strategy for controlling urban indoor air quality.

Change of the Size-Resolved Aerosol Concentration Due to Relative Humidity (습도 변화에 따른 에어로졸의 농도 및 크기의 변화경향 파악)

  • Jung, Chang Hoon;Park, Jin Hee;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.69-78
    • /
    • 2013
  • In this study, the atmospheric aerosol concentration measured at different relative humidity levels was analyzed. Using an optical particle counter, PM10 and PM2.5 concentration as well as particle size distribution were measured and the relation between these size resolved data and relative humidity was studied. The results showed that mass concentration increases as relative humidity increases. The comparison between PM1, PM2.5 and PM10 showed that the fine particles grow more than coarse particles as relative humidity increases. The results also showed that PM10-2.5 and relative humidity do not show close correlation, which means that the mass increase of PM10 at high relative humidity is mainly due to the growth of PM2.5.

Effect of the Nishinoshima Volcanic Eruption on Fine Particulate Concentration in Busan in Early August 2020 (일본 니시노시마 화산 분출이 2020년 8월 초 부산지역의 미세먼지 농도에 미치는 영향)

  • Byung-Il Jeon
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1079-1087
    • /
    • 2022
  • This study investigated the effect of volcanic materials that erupted from the Nishinoshima volcano, Japan, 1,300 km southeast of the Busan area at the end of July 2020, on the fine particle concentration in the Busan area. Backward trajectory analysis from the HYSPLIT model showed that the air parcel from the Nishinoshima volcano turned clockwise along the edge of the North Pacific high pressure and reached the Busan area. From August 4 to August 5, 2020, the concentration of PM10 and PM2.5 in Busan started to increase rapidly from 1000 LST on August 4, and showed a high concentration for approximately 13 hours until 2400 LST. The PM2.5/PM10 ratio showed a relatively high value of 0.7 or more, and the SO2 concentration also showed a high value at the time when the PM10 and PM2.5 concentrations were relatively high. The SO42- concentration in PM2.5 in Busan showed a similar trend to the change in PM10 and PM2.5 concentrations. It rose sharply from 1300 LST on August 4, at the time where it was expected to have been affected by the Nishinoshima Volcano. This study has shown that the occurrence of high concentration fine particle in Busan in summer has the potential to affect Korea not only due to anthropogenic factors but also from natural causes such as volcanic eruptions in Japan.