Browse > Article
http://dx.doi.org/10.5668/JEHS.2014.40.1.10

Pilot Study for Difference of Secondhand Smoke Exposure at Smoking and Non-smoking Nightclubs  

Guak, Sooyoung (Department of Environmental Health and Institute of Health and Environment, Graduate School of Public Health, Seoul National University)
Lee, Boram (Department of Environmental Health and Institute of Health and Environment, Graduate School of Public Health, Seoul National University)
Xu, Siyu (Department of Environmental Health and Institute of Health and Environment, Graduate School of Public Health, Seoul National University)
Lee, Kiyoung (Department of Environmental Health and Institute of Health and Environment, Graduate School of Public Health, Seoul National University)
Lee, Dohoon (National Cancer Center)
Publication Information
Journal of Environmental Health Sciences / v.40, no.1, 2014 , pp. 10-16 More about this Journal
Abstract
Objectives: This pilot study assessed secondhand smoke (SHS) exposure in smoking and non-smoking nightclubs in Seoul, Korea by measuring the concentration of particulate matter smaller than $2.5{\mu}m$ ($PM_{2.5}$). Methods: This comparative study was conducted in three nightclubs in Seoul. While one non-smoking nightclub was measured on weekdays and weekends, different smoking nightclubs were measured on weekdays and weekends. The concentration of $PM_{2.5}$ was observed using a real-time monitor over an average of three hours. The number of people in the clubs was also estimated. Settled dust was collected in a smoking and a non-smoking nightclub and analyzed for NNK concentration. Results: The $PM_{2.5}$ concentration in the smoking nightclubs was higher than those found in the non-smoking nightclub by 26 times on weekdays and three times on weekends. Indoor $PM_{2.5}$ concentration was correlated with the number of people in the smoking nightclubs. Relatively high $PM_{2.5}$ concentration was observed in the non-smoking nightclub on weekends. NNK concentration in the smoking nightclub was 7 times higer than in the non-smoking nightclub. Conclusion: Smoking in nightclubs caused high $PM_{2.5}$ concentration. Although the non-smoking nightclub had a lower $PM_{2.5}$ concentration, $PM_{2.5}$ concentration on weekends was higher due to the smoking room. Complete prohibition of smoking in nightclubs can protect patrons from secondhand smoke exposure.
Keywords
Indoor air; Nightclub; NNK; $PM_{2.5}$; Secondhand smoke;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Seoul medical center. Evaluation or effects of national smoke-free law by measuring indoor secondhand smoke. Seoul: Seoul medical center Press; 2013.
2 Nebot M, Lopez MJ, Gorini G, Neuberger M, Axelsson S, Pilali M, et al. Environmental tobacco smoke exposure in public places of European cities. Tob Control. 2005; 14(1): 60-63.   DOI   ScienceOn
3 Bolte G, Heitmann D, Kiranoglu M, Schierl R, Diemer J, Koerner W, et al. Exposure to environmental tobacco smoke in German restaurants, pubs and discotheques. J Expo Sci Environ Epidemiol. 2008; 18(3): 262-371. 13.   DOI   ScienceOn
4 Lazcano-Ponce E, Benowitz N, Sanchez-Zamorano LM, Barbosa-Sanchez L, Valdes-Salgado R, Jacob P 3rd, et al. Secondhand smoke exposure in Mexican discotheques. Nicotine Tob Res. 2007; 9(10): 1021-1026.   DOI   ScienceOn
5 Klepeis, Neil E, Michael GA, Lara AG, Richard GS, William WN. Determining size-specific emission factors for environmental tobacco smoke particles. Aerosol Science & Technology. 2003; 37(10): 52-60.
6 Lee K, Hahn EJ, Riker C, Head S, Seithers P. Immediate impact of smoke-free laws on indoor air quality. South Med J. 2007; 100(9): 885-889.   DOI   ScienceOn
7 Lee M, Kim B, Kim K, Yoon D, Kim S. Assessment of secondhand smoke in indoor and outdoor campus. The 2nd International Symposium of Environmental Health. Seoul: Ministry of Environmental Press; 2013.
8 Schick SF, Glantz S. Concentrations of the carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in sidestream cigarette smoke increase after release into indoor air: results from unpublished tobacco industry research. Cancer Epidemiol Biomarkers Prev. 2007; 16(8): 1547-1553.   DOI   ScienceOn
9 Thomas JL, Hecht SS, Luo X, Ming X, Ahluwalia JS, Carmella SG. Thirdhand tobacco smoke: a tobacco-specific lung carcinogen on surfaces in smokers' homes. Nicotine Tob Res. 2014; 16(1): 26-32.   DOI   ScienceOn
10 Neuberger M, Moshammer H, Schietz A. Exposure to ultrafine particles in hospitality venues with partial smoking bans. J Expo Sci Environ Epidemiol. 2013; 23(5): 519-524.   DOI   ScienceOn
11 Kim SR, Sohn JR, Lee KY. Exposure to particulate matters ($PM_{2.5}$) and airborne nicotine in computer game rooms after implementation of smoke-free legislation in South Korea. Nicotine Tob Res. 2010; 12(12): 1246-1253.   DOI   ScienceOn
12 Magari SR, Hauser R, Schwartz J, Williams PL, Smith TJ, Christiani DC. Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation. 2001; 104(9): 986-91.   DOI   ScienceOn
13 Ministry of Health and Welfare. Article 6 of the Enforcement Rules of the National Health Promotion Act. Sejong: Ministry of Health and Welfare Press; 2013.
14 Cho HR, Gu SG, Kim JH, Kim SB, Lee GY. Exposures to Ultrafine Particles, $PM_{2.5}$ and $PM_{10}$ in Cooking and Non-Cooking Areas of Department Stores in Seoul. J Environ Health Sci. 2013; 39(2): 144-150.   과학기술학회마을   DOI   ScienceOn
15 Hyland A, Travers MJ, Dresler C, Higbee C, Cummings KM. A 21-country comparison of tobacco smoke derived particle level indoor public places. Tobacco Control, 2008; 17: 159-165.   DOI   ScienceOn
16 Sleiman M, Gundel LA, Pankow JF, Jacob P 3rd, Singer BC, Destaillats H. Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards. Proc Natl Acad Sci USA. 2010; 107(15): 6576-6581.   DOI