• Title/Summary/Keyword: PM10 Air Monitoring

Search Result 299, Processing Time 0.033 seconds

Evaluation of Air Pollution Monitoring Networks in Seoul Metropolitan Area using Multivariate Analysis (다변량분석법을 활용한 수도권지역의 대기오염측정망 평가)

  • Choi, Im-Jo;Jo, Wan-Keun;Sin, Seung-Ho
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.673-681
    • /
    • 2016
  • The adequacy of urban air quality monitoring networks in the largest metropolitan city, Seoul was evaluated using multivariate analysis for $SO_2$, $NO_2$, CO, PM10, and $O_3$. Through cluster analysis for 5 air pollutants concentrations, existing monitoring stations are seen to be clustered mostly by geographical locations of the eight zones in Seoul. And the stations included in the same cluster are redundantly monitoring air pollutants exhibiting similar atmospheric behavior, thus it can be seen that they are being operated inefficiently. Because monitoring stations groups representing redudancy were different depending on measurement items and several pollutants are being measured at the same time in each air monitoring station, it is seemed to be not easy to integrate or transmigrate stations. But it may be proposed as follows : the redundant stations can be integrated or transmigrated based on ozone of which measures are increasing in recent years and alternatively the remaining pollutants other than the pollutant exhibiting similar atmospheric behavior with nearby station's can be measured. So it is considered to be able to operate air quality monitoring networks effectively and economically in order to improve air quality.

Evaluation of Temporal and Spatial PM10 Characteristics for Pollution Management in Daegu area (대구지역 PM10 오염 관리를 위한 시간적 및 공간적 오염 특성 평가)

  • Jo, Wan Geun;Gwon, Gi Dong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.27-36
    • /
    • 2004
  • Present study analyzed the temporal and spatial characteristics of PM10 pollution in Metropolitan Daegu area based on air pollution monitoring station data and measurements of PM10 concentrations in background area in order to provide essential data for efficient PM10 pollution management. The significant variation of spatial and temporal PM10 concentrations in Daegu area was observed during the study years. The highest maximum PM10 concentration(332 $\mu\textrm{g}$/㎥), average concentration(88 $\mu\textrm{g}$/㎥) and frequency exceeding PM10 daily standard(150 $\mu\textrm{g}$/㎥) were all observed in Namsandong located near a major roadway. The hourly and weekly variations of PM10 concentrations had different pattern for the measurement sites. The monthly and seasonal concentrations exhibited a notable characteristic: the maximum concentration was obtained in spring season, most likely due to Yellow sand effects. Furthermore, this temporal variation of PM10 pollution varied with study site. Meanwhile, the PM10 values measured at the monitoring site, Manchondong, were comparable with those of a control site. The average PM10 concentration ranged from 23 $\mu\textrm{g}$/㎥ to 115 $\mu\textrm{g}$/㎥ with a mean value of 53 $\mu\textrm{g}$/㎥ in the former site and from 22 $\mu\textrm{g}$/㎥ to 91 $\mu\textrm{g}$/㎥ with a mean value of 45 $\mu\textrm{g}$/㎥ in the latter site.

Temporal Variation of Indoor Air Quality in Daycare Centers (어린이집에서 이산화탄소와 미세먼지의 장기간 시간적인 변이를 활용한 실내환경수준 평가)

  • Kim, Yoonjee;Lee, Sewon;Ban, Hyunkyung;Cha, Sangmin;Kim, Geunbae;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.267-272
    • /
    • 2017
  • Objectives: The purposes of the study were to analyze the temporal variation of carbon dioxide ($CO_2$) and particulate matter (PM) in daycare centers and evaluate the appropriateness of the official test method of one-time measurement. Methods: Indoor air quality in 46 daycare centers in the Seoul Metropolitan Area was measured as specified in the official test method of Indoor Air Quality Management law. In addition, indoor air quality in the 46 daycare centers was measured over 37 days using a real-time monitor (AirGuard K). Results: The daily means of $CO_2$ and PM in the 46 daycare centers were $1042.74{\pm}134.45ppm$ and $67.60{\pm}18.25{\mu}g/m^3$, respectively. Indoor air quality in the daycare centers showed significant temporal fluctuation. Measurements for single days were significantly different from the 37-day average exposure. Relative error of short term exposure decreased with an increase in the number of sampling days. The noncompliance rate for $CO_2$ using the official testing method was 2.17%, and none exceeded the $PM_{10}$ standard of $100{\mu}g/m^3$. With monitoring over 37 days, the daily noncompliance rate for $CO_2$ was 50.4% and the daily noncompliance rate for PM was 13.8%. Conclusions: When the official test method evaluates the indoor air at daycare centers one day per year, the results may not represent actual indoor air quality over a longer period of time. Real-time monitoring devices could be an alternative for managing indoor air quality.

Chemical Characteristics and Source Apportionment ofPM2.5 in Seoul Metropolitan Area in 2010 (2010년도 서울시 대기 중 PM2.5의 성분특성 및 발생원 추정에 관한 연구)

  • Moon, Kwang-Joo;Park, Seung-Myung;Park, Jong-Sung;Song, In-Ho;Jang, Sung-Ki;Kim, Jong-Chun;Lee, Seok-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • This study is aimed to estimate the $PM_{2.5}$ source apportionment at Seoul intensive monitoring site located in Seoul metropolitan area. Time-resolved chemical compositions of $PM_{2.5}$ are measured in real time using ambient ion monitor, semi-continuous carbon monitor, and on-line XRF at Seoul intensive monitoring site in 2010. The mass concentration of $PM_{2.5}$ was simultaneously monitored with eight ionic species (${SO_4}^{2-}$, $NO_3{^-}$, $Cl^-$, $NH_4{^+}$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$), two carbonaceous species (OC and EC), and fourteen elements (Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Pb) in 1-hr interval. The data sets were then analyzed using EPA PMF version 3 to identify sources and contributions to $PM_{2.5}$ mass. EPA PMF modeling identified eight PM2.5 sources, including soil dust, secondary sulfate, secondary nitrate, motor vehicle, coal combustion, oil combustion, biomass burning, and municipal incineration. This study found that the average $PM_{2.5}$ mass was apportioned to anthropogenic sources such as motor vehicle, fuel combustion, and biomass burning (61%) and secondary aerosols, including sulfate and nitrate (38%).

Assessment of location of the air quality monitoring stations according to the analysis of wind sector division in Pohang (포항지역의 바람권역 분석에 따른 대기측정망 위치 평가)

  • Jung, Jong-Hyeon;Lee, Hyung-Don;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1931-1938
    • /
    • 2012
  • This study evaluated whether the installed location of air quality monitoring stations is at an optimal level in an effort to improve the health and environmental quality of the surrounding areas of the Pohang Steel Complex. As a result of analyzing the atmospheric flow field, it was found that the location of air quality monitoring stations was acceptable in case of Daesong-myeon(The 1st Division of Local Wind Sector) and Jukdo-dong(The 3rd Division of Local Wind Sector). However, the air quality monitoring stations installed at Daedo-dong and Jukdo-dong is judged to have made an overlapped measurement because the stations existed at the Division of the same Wind Sector. Accordingly, this study suggests that the further air quality monitoring stations should be additionally installed at Buk-gu areas of Pohang where more than 50% of the population of Pohang is living presently. As a result of the analysis of air contaminant concentration distribution, the Jangheung-dong area showed higher concentration distribution than other areas in case of $PM_{10}$ while the Daesong-myeon area showed a comparatively higher concentration distribution in case of $O_3$. Conclusively, this study indicates that it is high time to prepare an aggressive management of $PM_{10}$ and $O_3$ which causes a harmful impact on the life and health of the residents of the target areas.

Policy Effects of Secondhand Smoke Exposure in Public Places in the Republic of Korea: Evidence from PM2.5 levels and Air Nicotine Concentrations

  • Park, Eun Young;Lim, Min Kyung;Yang, Wonho;Yun, E Hwa;Oh, Jin-Kyoung;Jeong, Bo Yoon;Hong, Soon Yeoul;Lee, Do-Hoon;Tamplin, Steve
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7725-7730
    • /
    • 2013
  • Objective: The purpose of this study was to evaluate secondhand smoke (SHS) exposure inside selected public places to provide basic data for the development and promotion of smoke-free policies. Methods: Between March and May 2009, an SHS exposure survey was conducted. $PM_{2.5}$ levels and air nicotine concentrations were measured in hospitals (n=5), government buildings (4), restaurants (10) and entertainment venues (10) in Seoul, Republic of Korea, using a common protocol. Field researchers completed an observational questionnaire to document evidence of active smoking (the smell of cigarette smoke, presence of cigarette butts and witnessing people smoking) and administered a questionnaire regarding building characteristics and smoking policy. Results: Indoor $PM_{2.5}$ levels and air nicotine concentrations were relatively higher in monitoring sites where smoking is not prohibited by law. Entertainment venues had the highest values of $PM_{2.5}$(${\mu}g/m^3$) and air nicotine concentration(${\mu}g/m^3$), which were 7.6 and 67.9 fold higher than those of hospitals, respectively, where the values were the lowest. When evidence of active smoking was present, the mean $PM_{2.5}$ level was 104.9 ${\mu}g/m^3$, i.e., more than 4-fold the level determined by the World Health Organization for 24-hr exposure (25 ${\mu}g/m^3$). Mean indoor air nicotine concentration at monitoring sites with evidence of active smoking was 59-fold higher than at sites without this evidence (2.94 ${\mu}g/m^3$ vs. 0.05 ${\mu}g/m^3$). The results were similar at all specific monitoring sites except restaurants, where mean indoor $PM_{2.5}$ levels did not differ at sites with and without active smoking evidence and indoor air nicotine concentrations were higher in sites without evidence of smoking. Conclusion: Nicotine was detected in most of our monitoring sites, including those where smoking is prohibited by law, such as hospitals, demonstrating that enforcement and compliance with current smoke-free policies in Korea is not adequate to protect against SHS exposure.

Geographical Characteristics of PM2.5, PM10 and O3 Concentrations Measured at the Air Quality Monitoring Systems in the Seoul Metropolitan Area (수도권 지역 도시대기측정소 PM2.5, PM10, O3 농도의 지리적 분포 특성)

  • Kang, Jung-Eun;Mun, Da-Som;Kim, Jae-Jin;Choi, Jin-Young;Lee, Jae-Bum;Lee, Dae-Gyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.657-664
    • /
    • 2021
  • In this study, we investigated the relationships between the air quality (PM2.5, PM10, O3) concentrations and local geographical characteristics (terrain heights, building area ratios, population density in 9 km × 9 km gridded subareas) in the Seoul metropolitan area. To analyze the terrain heights and building area ratios, we used the geographic information system data provided by the NGII (National Geographic Information Institute). Also, we used the administrative districts and population provided by KOSIS (Korean Statistical Information Service) to estimate population densities. We analyzed the PM2.5, PM10, and O3 concentrations measured at the 146 AQMSs (air quality monitoring system) within the Seoul metropolitan area. The analysis period is from January 2010 to December 2020, and the monthly concentrations were calculated by averaging the hourly concentrations. The terrain is high in the northern and eastern parts of Gyeonggi-do and low near the west coastline. The distributions of building area ratios and population densities were similar to each other. During the analysis period, the monthly PM2.5 and PM10 concentrations at 146 AQMSs were high from January to March. The O3 concentrations were high from April to June. The population densities were negatively correlated with PM2.5, PM10, and O3 concentrations (weakly with PM2.5 and PM10 but strongly with O3). On the other hand, the AQMS heights showed no significant correlation with the pollutant concentrations, implying that further studies on the relationship between terrain heights and pollutant concentrations should be accompanied.

Comparison of the PM-10 mass concentration in different measurement methods and meteorological conditions (측정방법 및 기상상태에 따른 PM-10 질량농도 비교)

  • Jung, Chang Hoon;Park, Jin Hee;Hwang, S.M.;Jung, Y.G.
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.53-62
    • /
    • 2009
  • In this study, the continuous monitoring of the concentration of PM-10 atmospheric particulate matter using beta ray attenuation method was compared with gravimetric method from September, 2006 to August, 2007. On the effects of the PM-10 concentration and mass difference by relative humidity and precipitation were considered. The result showed that the measurement error between beta ray method and gravimetric method are within -3~6% in average, which means PM-10 concentration data with beta ray method are relatively comparable. The current study also shows that the high PM-10 concentration events are mainly due to haze, Asian dust, and high relative humidity and the PM-10 mass concentration is closely related with relative humidity and precipitation events. Based on daily mean data, the PM-10 increases as relative humidity increases up to 70~80%, then decreases over 80% due to the precipitation. However, the distinct measurement discrepancy was not shown between beta ray method and gravimetric method based on current results. Consequently, this study shows that the collocated measurement in different instrument is essential in order to quantify the accuracy of PM-10. Furthermore, the more comprehensive and spatially distributed comparison is needed and this is remained for future study.

  • PDF

Assessment of correlation between markers of ambient monitoring and biological monitoring of dimethylformamide for workers in synthetic leather manufacturing factories in Korea (국내 합성피혁제조업 근로자에 대한 디메틸포름아미드의 공기중 농도와 생물학적 노출지표간의 상관성 평가)

  • Hwang, Yang In;Lee, Mi-Young;Chung, Yun Kyung;Kim, Eun A
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.315-325
    • /
    • 2013
  • The possibility of acute hepatotoxicity caused by dimethylformamide (DMF) requires regular monitoring of the workers who are using DMF to prevent the occupational disease. The authors performed ambient and biological monitoring of workers involved in synthetic leather manufacturing processes using DMF to assess the correlation between the markers of ambient and biological monitoring of DMF. The authors monitored 142 workers occupationally exposed to DMF from 19 workshops in the synthetic leather and ink manufacturing industries located in northern region of Gyeonggi-do. The subjects answered questionnaire on work procedure and use of personal protective equipment to be classified by exposure type. DMF in air samples collected using personal air samplers, diffusive and active sampler, was analysed using gas chromatograph-flame ionization detector (GC-FID) with DB-FFAP column (length 30 m, i.d. 0.25 mm, film thickness 0.25 ${\mu}m$). Urinary N-methylformamide (NMF) was analysed using gas chromatograph-mass selective detector (GC-MSD) at selected ion monitoring (SIM) mode with DB-624 column (length 60 m, i.d. 0.25 mm, film thickness 1.40 ${\mu}m$). Geometric mean (GM) and geometric standard deviation (GSD) of the ambient DMF was $6.85{\pm}3.43$ ppm, and GM and GSD of urinary NMF was $42.3{\pm}2.7$ mg/L. The ratio of subjects with DMF level over 10 ppm was 44%, and those with urinary NMF over 15 mg/L was 87%. NMF in urine adjusted by DMF in air was $4.61{\pm}2.57$ mg/L/ppm and $9.50{\pm}2.41$ mg/L/ppm, respectively, with or without respirator. There was seasonal differences of NMF in urine adjusted by DMF in air, $7.63{\pm}2.74$ mg/L/ppm in summer and $4.53{\pm}2.29$ mg/L/ppm in winter. The urinary NMF concentration which corresponds to 10 ppm of ambient DMF was 52.7 mg/L (r=0.650, n=128). Considering the difference of the route of exposure which resulted from the compliance of wearing personal protective equipment, the estimated contribution of respiratory and dermal exposure route for DMF was 48.5% vs. 51.5%.