• Title/Summary/Keyword: PM10 Air Monitoring

Search Result 299, Processing Time 0.023 seconds

Urinary 1-Hydroxypyrene and 2-Naphthol as a Biological Exposure Markers of Total Suspended Particulate in the General Population (일반 인구집단에 대한 대기중 총먼지의 생물학적 노출지표로서 요중 1-hydroxypyrene 및 2-naphthol의 유용성)

  • Kang, Jong-Won;Kim, Heon;Kang, Dae-Hee;Lee, Chul-Ho;Cho, Soo-Hun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.3
    • /
    • pp.306-312
    • /
    • 2000
  • Background : Polycyclic aromatic hydrocarbons (PAH) are well known environmental pollutants. The measurement of PAH in ambient air is not commonly used, because it is quite difficult to perform and is unreliable. Using biomarkers of PAH can be an alternative approach to this problem. The PAH in ambient air is absorbed in particulate matter. Total suspended particulate(TSP) or particulate matter of less than $10{\mu}m$ in diameter (PM10) can be easily measured. Therefore, TSP or PM10 can be used as a surrogate measurements of ambient air PAH. Objectives : We investigated whether the urinary concentration of two biomarkers of PAH, 1-hydroxypyrene (1-OHP) and 2-naphthol, could reflect the total suspended particulate in the general population. Methods : In order to exclude the effects of occupational exposure and smoking, first grade middle school students were included in this study. Four middle schools within a one kilometer boundary of ambient air monitoring stations were selected. Total suspended particulate was regarded as the marker of airborne PAH. Diet and smoking data were collected by self administered questionnaires, and spot urine samples were collected. Urinary 1-OHP and 2-naphthol were analyzed by high performance liquid chromatography. Results : The correlation between urinary 1-OHP, 2-naphthol and passive smoking was not statistically significant. The correlation between urinary 1-OHP and TSP indices was not statistically significant. The correlations between urinary 2-naphthol and TSP of two lag days, one lag day, and zero lag days were statistically significant. The statistical significance of two lag days was the strongest (p=0.001), one lag day was the next (p=0.0275), and zero lag days was the weakest (p=0.0349). Conclusion : Our results imply that the urinary concentration of 2-naphthol can be applied as a PAH exposure marker for the general population with low PAH exposure.

  • PDF

The Relationship between Exposure to Benzene and the Excretion of Urinary Trans, Trans-muconic Acid in Petrochemical Factory Turnaround Process Workers (석유화학공장 대정비 작업 근로자의 벤젠 노출과 요중 trans, trans-muconic acid 배설과의 관계)

  • Lee, Seung Min;Won, Jong Uk;Kim, Chi Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Objectives: Using laborers participating in the petrochemical factory turnaround process as subjects, this study aims to identify exposure to benzene in the air and examine the relationship between exposure and the excretion of urinary metabolites by measuring concentrations of urinary trans, trans-muconic acid (t,t-MA). Methods: A passive sampler was used to measure the level of benzene in the air. In order to analyze urinary metabolites, the urine of laborers participating in the turnaround process was collected twice daily, both before and after work. In addition, a survey was conducted on work factors and lifestyle habits as factors affecting the concentration of urinary metabolites. Results: During the survey period, benzene was detected in the samples from all workers, and its average concentration was $0.16{\pm}0.22ppm$. The average concentration of t,t-MA after work was $1.20{\pm}1.86mg/g$ creatinine, and the results of analyzing urinary metabolites concentration before and after work showed statistically significant differences(p=0.003). There was also a statistically significant correlation (r=0.52, p=0.002) between benzene in the air and the concentration of after-work urinary t,t-MA. Conclusions: During the turnaround process, the average benzene concentration in workers was $0.16{\pm}0.22ppm$, which was below the exposure limit. However, their average t,t-MA concentration was $1.20{\pm}1.86mg/g$ creatinine, which exceeded the exposure limit of 1mg/g creatinine. The characteristics of turnaround process work require considerations such as underestimating the passive sampler being used and the skin absorption of benzene, and there needs to be a simultaneous assessment of working environment measurements and biological monitoring.

Temporal Trends and Spatial Comparisons of Ozone Concentrations in Jinju (진주시 오존농도의 시간적 추이와 공간적 비교)

  • Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.761-769
    • /
    • 2010
  • Temporal trends of ozone concentration in Jinju were investigated by using observation data from 3 air quality monitoring stations for the period of 2004~2008. In addition, spatial comparisons of ozone concentration at Jeoguri, upwind and downwind directions of Jinju were investigated between May and September 2009. Annual mean exhibited increasing trends +1.7ppb/yr throughout the study period. In the case of diurnal variation, the lowest ozone concentration was shown from 7 am to 8 am and the highest around 4 pm. The ozone concentrations of Jeoguri station of the south coast were higher than Jinju. In particular, the upwind direction of Jinju had relatively hight ozone concentration

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.

Exposure to Particles and Nitrogen Dioxide Among Workers in the Stockholm Underground Train System

  • Plato, N.;Bigert, C.;Larsson, B.M.;Alderling, M.;Svartengren, M.;Gustavsson, P.
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.377-383
    • /
    • 2019
  • Objectives: Exposure to fine particles in urban air has been associated with a number of negative health effects. High levels of fine particles have been detected at underground stations in big cities. We investigated the exposure conditions in four occupational groups in the Stockholm underground train system to identify high-exposed groups and study variations in exposure. Methods: $PM_1$ and $PM_{2.5}$ were measured during three full work shifts on 44 underground workers. Fluctuations in exposure were monitored by a real-time particle monitoring instrument, pDR, DataRAM. Qualitative analysis of particle content was performed using inductively coupled plasma mass spectrometry. Nitrogen dioxide was measured using passive monitors. Results: For all underground workers, the geometric mean (GM) of $PM_1$ was $18{\mu}g/m^3$ and of $PM_{2.5}$ was $37{\mu}g/m^3$. The particle exposure was highest for cleaners/platform workers, and the GM of $PM_1$ was $31.6{\mu}g/m^3$ [geometric standard deviation (GSD), 1.6] and of $PM_{2.5}$ was $76.5{\mu}g/m^3$ (GSD, 1.3); the particle exposure was lowest for ticket sellers, and the GM of $PM_1$ was $4.9{\mu}g/m^3$ (GSD, 2.1) and of $PM_{2.5}$ was $9.3{\mu}g/m^3$ (GSD, 1.5). The $PM_1$ and $PM_{2.5}$ levels were five times higher in the underground system than at the street level, and the particles in the underground had high iron content. The train driver's nitrogen dioxide exposure level was $64.1{\mu}g/m^3$ (GSD, 1.5). Conclusions: Cleaners and other platform workers were statistically significantly more exposed to particles than train drivers or ticket sellers. Particle concentrations ($PM_{2.5}$) in the Stockholm underground system were within the same range as in the New York underground system but were much lower than in several older underground systems around the world.

Health Risk Assessment by Exposure to Heavy Metals in PM2.5 in Ulsan Industrial Complex Area (울산 산단지역 PM2.5 중 중금속 노출에 의한 건강위해성평가)

  • Ji-Yun Jung;Hye-Won Lee;Si-Hyun Park;Jeong-Il Lee;Dan-Ki Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.108-117
    • /
    • 2023
  • Background: When particles are absorbed into the human body, they penetrate deep into the lungs and interact with the tissues of the body. Heavy metals in PM2.5 can cause various diseases. The main source of PM2.5 emissions in South Korea's atmosphere has been surveyed to be places of business. Objectives: The concentration of heavy metals in PM2.5 near the Ulsan Industrial Complex was measured and a health risk assessment was performed for residents near the industrial complex for exposure to heavy metals in PM2.5. Methods: Concentrations of heavy metals in PM2.5 were measured at four measurement sites (Ulsan, Mipo, Onsan, Maegok) near the industrial complexes. Heavy metals were analyzed according to the Air Pollution Monitoring Network Installation and Operation Guidelines presented by the National Institute of Environmental Research. Among them, only five substances (Mn, Ni, As, Cd, Cr6+) were targeted. The risk assessment was conducted on inhalation exposure for five age groups, and the excess cancer risk and hazard quotient were calculated. Results: In the risk assessment of exposure to heavy metals in PM2.5, As, Cd, and Cr6+ exceeded the risk tolerance standard of 10-6 for carcinogenic hazards. The highest hazard levels were observed in Onsan and Mipo industrial complexes. In the case of non-carcinogenic hazards, Mn was identified as exceeding the hazard tolerance of 1, and it showed the highest hazard in the Ulsan Industrial Complex. Conclusions: This study presented a detailed health risk from exposure to heavy metals in PM2.5 by industrial complexes located in Ulsan among five age groups. It is expected to be utilized as the basis for preparing damage control and industrial emission reduction measures against PM2.5 exposure at the Ulsan Industrial Complex.

Factor analysis of Environmental Disease by Air Pollution: Analysis and Implication of Google Trends Data with Big Data (대기오염에 따른 환경성 질환의 인자 분석: Big Data를 통한 Google 트렌드 데이터의 분석 및 영향)

  • Choi, KilYong;Lee, SuMin;Lee, ChulMin;Seo, SungChul
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.563-571
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate the environmental pollution caused by exposure to air pollution in Korea. Therefore, it is necessary to investigate environmental and health factors through big data. Methods: Among the environmental diseases, the data centered on "percentage per day in 2015 to 2018". Data of environmental diseases and concentrations of air pollution monitoring network were analyzed. Results: Lung cancer and bronchiolitis obliterans were correlated with 0.027 and 0.0158, respectively, in the contamination concentration of fine dust ($PM_{10}$). Ozone, COPD, allergic rhinitis, and bronchiolitis obliterans were correlated with 0.0022, 0.0028 and 0.0093, respectively. At the concentration of $SO_2$ and the diseases of asthma, atopic dermatitis, lung cancer and bronchiolitis obliterans were 0.0008, 0.0523, 0.0016 and 0.0126, respectively. Conclusions: We surveyed the trends of air pollution according to the characteristics of Seoul area in Korea and evaluated the perception of Korea and the world. As a result, respiratory lung disease is thought to be a major factor in exposure to environmental pollution.

A Study on the Concentration and Characteristics of Methicillin-resistant Staphylococci in the Indoor Air of Childcare Facilities (일부 어린이집의 실내공기 중 메치실린내성 포도알균의 오염 실태 및 특성)

  • Kim, Jong Oh;Kim, Young Jin
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.447-455
    • /
    • 2013
  • Objectives: This study aims to understand the concentration, diversity, and antibiotic characteristics of staphylococci present in the indoor air of child-care facilities. Methods: Air sampling was performed from October 2012 to January 2013 in 120 child-care facilities in Seoul, Korea. Methicillin-resistant bacteria were selected from the total obtained airborne bacteria and subjected to 16S rRNA analysis for methicillin-resistant staphylococcal species determination. Identified staphylococcal strains were tested for resistance to a range of antibiotics. Results: Average total airborne bacterial concentration was $508.9{\pm}246.3CFU/m^3$. Indoor concentration of total airborne bacteria had a significant positive correlation with the $CO_2$ concentration in the child-care facilities. Methicillin-resistant staphylococci were present in 13.3% of the child-care facilities studied. A total of four species (S. epidermidis, S. cohnii, S. saprophyticus, S. sp.) and 55 strains were identified from the indoor air of the child-care facilities. Staphylococcus cohnii was the most common species (54.5%), followed by S. epidermidis (38.2%). All of the isolated staphylococcal strains exhibited high resistance to oxacillin, erythromycin, mupirocin, and ceftizoxime. Especially, S. saprophyticus strains showed more multidrug resistance to oxacillin, vancomycin, clindamycin, erythromycin, lincomycin, ceftizoxime, mupirocin, and tetracycline than did other species. Conclusion: The results of this study showed that a monitoring system for multidrug-resistant bacteria is needed in facilities for children, as the community-associated infections of these bacteria are increasing.

Algorithm Development of a Visibility Monitoring Technique Using Digital Image Analysis

  • Pokhrel, Rajib;Lee, Hee-Kwan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.8-20
    • /
    • 2011
  • Atmospheric visibility is one of the indicators used to evaluate the status of air quality. Based on a conceptual definition of visibility as the maximum distance at which the outline of the selected target can be recognized, an image analysis technique is introduced here and an algorithm is developed for visibility monitoring. Although there are various measurement techniques, ranging from bulk and precise instruments to naked eye observation techniques, each has their own limitations. In this study, a series of image analysis techniques were introduced and examined for in-situ application. An imaging system was built up using a digital camera and was installed on the study sites in Incheon and Seoul separately. Visual range was also monitored by using a dual technology visibility sensor in Incheon and transmissometer in Seoul simultaneously. The Sobel mask filter was applied to detect the edge lines of objects by extracting the high frequency from the digital image. The root mean square (RMS) index of variation among the pixels in the image was substantially correlated with the visual ranges in Incheon and Seoul with correlations of $R^2$=0.88 and $R^2$=0.71, respectively. The regression line equations between the visual range and the RMS index in Incheon and Seoul were VR=$2.36e^{0.46{\times}(RMS)}$ and VR=$3.18e^{0.15{\times}(RMS)}$, respectively. It was also confirmed that the fine particles ($PM_{2.5}$) have more impacts to the impairment of visibility than coarse particles.

The Association of Subjective Symptoms of Students and Indoor Air Quality in Private Academic Facilities (학원시설 실내공기질과 이용자의 자각증상에 관한 연구)

  • Jung, Kyung-Sick;Kim, Nam-Soo;Lee, Jong-Dae;HwangBo, Young;Son, Bu-Soon;Lee, Byung-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.468-477
    • /
    • 2009
  • To evaluate the current indoor air quality condition of private academic facilities in Korea and investigate its association with subjective symptoms of student residing at the same academic facilities, air quality monitoring was carried out in total of 20 academic facilities located in Seoul, Daejon and Chungnam from the beginning of January to the end of April, 2009. To assess the air quality condition of academic facilities, 6 air pollutants with temperature and humidity were measured simultaneously inside and outside of academic facilities. The rate of exceeding the Indoor Air Quality (IAQ) guideline concentrations in 6 air pollutants were 5%, 85%, 15%, 5%, 10% and 30% for CO, $CO_2$, PM10, HCHO, TVOCs and TBC, respectively. A questionnaire on 16 subjective symptoms related to indoor air quality was given to 342 students who studied at the 20 academic facilities. The most frequent symptom of students was 'I feel easily tired or sleepy', and this was followed by 'I feel muscular pain or stiffness on shoulder, back and neck'. The association of net difference (subjective symptoms at the academic facility - subjective symptoms of the usual situation) with air pollutants was analyzed using spearman rank correlation. In logistic analysis using proportional odds method, the students whose indoor air concentration of HCHO was ${\geq}60{\mu}g/m^3$ hadsignificant odds of having more subjective symptoms of 'My eyes are dry or feel irritated or itching' (OR=5.026: CI=1.587-15.911), 'I feel easily tired or sleepy' (OR=2.956: CI=1.072-8.152), 'I lose my concentration and I feel my memory is falling' (OR=7.745: CI=1.938-30.955) and 'I feel dizzy' (OR=4.424: CI=1.292-15.149) than those of <$60{\mu}g/m^3$.