• Title/Summary/Keyword: PM10 농도

Search Result 2,414, Processing Time 0.038 seconds

Composition and pollution characteristics of PM10 and PM2.5 particles at Gosan site of Jeju Island in 2008 (PM10, PM2.5 미세먼지의 조성 및 오염 특성: 2008년 제주도 고산지역 측정 결과)

  • Lee, Soon-Bong;Jung, Duk-Sang;Cho, Eun-Kyung;Kim, Hyeon-A;Hwang, Eun-Yeong;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.310-318
    • /
    • 2011
  • The collection of atmospheric $PM_{10}$ and $PM_{2.5}$ particle samples was made at Gosan site of Jeju Island, which is one of the most representative background sites in Korea. Their chemical compositions have been analyzed to explore the pollution characteristics and emission sources. The mass concentrations of $PM_{10}$ and $PM_{2.5}$ particles were $37.6{\pm}20.1$ and $22.9{\pm}14.3{\mu}g/m^3$, respectively, with the content of $PM_{2.5}$ to $PM_{10}$ as 61%. The $PM_{2.5}/PM_{10}$ ratios of nss-$SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ were 0.94, 0.56, 1.02, respectively, indicating that these components were distributed mostly in the fine fractions. Based on the factor analysis, it was found that the compositions of fine particles were mainly influenced by anthropogenic sources, followed by soil or marine sources. The results of the backward trajectory analysis indicate that the concentrations of nss-$SO_4^{2-}$, $NO_3^-$, $NH_4^+$, nss-$Ca^{2+}$, and Pb were high when the air parcels moved from the China continent, while relatively low with the air parcels coming from North Pacific Ocean and/or East Sea.

Assessment of PM-10 Monitoring Stations in Daegu using GIS Interpolation (공간 보간법을 이용한 도시지역 미세먼지 측정소의 배치 적절성 평가)

  • Kim, Hyo-Jeong;Jo, Wan-Kuen
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.3-13
    • /
    • 2012
  • This study evaluated the feasibility of the location for PM-10 Monitoring Stations utilizing through GIS analysis. In addition, optimal sites were investigated to properly manage PM-10 which are closely related with public health. There are 11 PM-10 monitoring stations in Daegu area and the PM-10 data monitored at these stations are utilized to understand the overall status of PM-10 pollution. However, there are contrastive issues on the locations of current monitoring stations. Thus, this study prepared the map of PM-10 concentrations in Daegu area using IDW and Kriging techniques. Furthermore, average PM-10 concentrations were calculated using zonal statistical methods according to legal divisions and then, the current monitoring stations were evaluated whether their location is appropriate or not for PM-10 pollution distribution. It was found that, on the basis of yearly, seasonal and daily concentration analysis, the location of current PM-10 monitoring stations were not appropriate, particularly as they could not represent regional PM-10 pollution characteristics. In order to supplement this deficiency, seven sites(Namsandong, Namildong, Dongildong, Buksungro 1, Jongro 1, Hyangchondong and Haejeondong) commonly selected from each analytical step are suggested as additional PM-10 monitoring sites. It is further suggested that this kind of scientific evaluation for the location of PM-10 monitoring stations are needed in order to properly manage public heath in other cities as well as Daegu area.

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data (부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출)

  • Park, Seohui;Kim, Miae;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.321-335
    • /
    • 2021
  • Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ㎛, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis(PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.

Characteristics of Atmospheric Speciated Gaseous Mercury in Chuncheon, Korea (춘천시 대기 중 가스상 수은 종 농도 특성에 관한 연구)

  • Gan, Sun-Yeong;Yi, Seung-Muk;Han, Young-Ji
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.382-391
    • /
    • 2009
  • Atmospheric speciated mercury concentrations including total gaseous mercury (TGM) and reactive gaseous mercury (RGM) were measured in Chuncheon from March 2006 to November 2008. Average concentrations were 2.10 ${\pm}$ 1.50 ng/$m^3$ and 3.00 ${\pm}$ 3.14 pg/$m^3$ for TGM and RGM, respectively. RGM concentrations were higher during daytime than nighttime probably because of high photochemical activities. We found that RGM concentration considerably increased as ozone increased when fog occurred, indicating that ozone was the important oxidant for $Hg^0$ in aqueous phase. TGM concentration showed positive correlations with CO and $PM_{10}$ which can transport in long-range, but there was no correlation with $NO_2$. Considering that major source of mercury is combustion process, this result showed that local sources did not significantly impact on TGM concentration in Chuncheon. Five-day backward trajectories were calculated for the samples representing high and low concentrations of TGM, and determined that industrialized area of China including Shenyang and Beijing influenced TGM concentrations in Chuncheon.

High Resolution Fine Dust Mass Concentration Calculation Using Two-wavelength Scanning Lidar System (두파장 스캐닝 라이다 시스템을 이용한 고해상도 미세먼지 질량 농도 산출)

  • Noh, Youngmin;Kim, Dukhyun;Choi, Sungchul;Choi, Changgi;Kim, TaeGyeong;Kim, Gahyeong;Shin, Dongho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1681-1690
    • /
    • 2020
  • A scanning lidar system has been developed. The system has two wavelength observation channels of 532 and 1064 nm and is capable of 360-degree horizontal scanning observation. In addition, an analysis method that can classify the measured particle as an indicator of coarse-mode particle (PM2.5-10) and an indicator of fine-mode particles (PM2.5) and calculate the mass concentration of each has been developed by using the backscatter coefficient at two wavelengths. It was applied to the data calculated by observation. The mass concentrations of PM10 and PM2.5, which showed a distribution of 22-110 ㎍/㎥ and 7-78 ㎍/㎥, respectively, were successfully calculated in the Ulsan Onsan Industrial Complex using the developed scanning lidar system. The analyzed results showed similar values to the mass concentrations measured on the ground around the lidar observation area, and it was confirmed that high concentrations of 80-110 ㎍/㎥ and 60-78 ㎍/㎥ were measured at points discharged from factories, respectively.