• Title/Summary/Keyword: PM sampler

Search Result 165, Processing Time 0.024 seconds

Opto-Chemical Characteristics of Visibility Impairment Using Semi-Continuous Aerosol Monitoring in an Urban Area during Summertime (에어로졸의 준실시간 관측에 의한 여름철 도시지역 시정 감쇄 현상의 광ㆍ화학적인 특성 분석)

  • 김경원;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.647-661
    • /
    • 2003
  • For continuous monitoring of atmospheric visibility in the city of Kwanaju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwanaju. At the transmitter site an integrating nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. At the receiver site. an URG PM$_{2.5}$ cyclone sampler and an URG-VAPS (Versatile Air Pollutant Sampler) with three filter packs and two denuders were used to collect both PM$_{2.5}$ and PM$_{10}$ samples at a 2-hour or 12-hour sampling interval for aerosol chemical analysis. Sulfate, organic mass by carbon (OMC), nitrate, elemental carbon (EC) components of fine aerosol were the major contributors to visibility impairment. Diurnal variation of visibility during best-case days showed rapid improvement in the morning hours, while it was delayed until afternoon during the worst-case days. Aerosol mass concentration of each aerosol component for the worst-case was calculated to be 11.2 times larger than the best-case for (NH$_4$)$_2$SO$_4$(NHSO), 19.0 times for NH$_4$NO$_3$ (NHNO), 2.2 times for OMC, respectively. Also result shows that elemental carbon and fine soil (FS) were 3.7 and 2.2 times more than those of best-case. respectively- Sum of total contributions of wet NHSO and NHNO to light extinction was calculated to be 301 Mm$^{-1}$ for the worst-case. However, sum of contributions by dry NHSO and NHNO was calculated to be 123 Mm$^{-1}$ for the best case. Mass extinction efficiencies of fine and coarse particles were calculated to be 5.8$\pm$0.3 $m^2$/g and 1.8$\pm$0.1 $m^2$/g, respectively.ely.

Concentration Characteristics of Atmospheric PM2.5, PM10 and TSP during the Asian Dust Storm in Iksan Area (익산지역에서 황사발생시 PM2.5, PM10 TSP의 농도 특성)

  • Kang, Gong-Unn;Kim, Nam-Song;Kim, Kyung-Suk;Kim, Mi-Kyung;Lee, Hyun-Ju
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.408-421
    • /
    • 2007
  • The concentration characteristics of atmospheric particle matters (PM) including $PM_{2.5},\;PM_{10}$, and TSP were evaluated through the measurement data of PM_{2.5}$ (fine particulate), PM_{10-2.5}$ (coarse particulate), and PM_{over-10}$ collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in spring of 2006 in Iksan area. During the sampling period of 10-15 March and 24 days from 8 April to 2 May, 32 samples for PM of each size fractions were collected, and then measured for PM mass concentrations and water-soluble inorganic ion species. Average concentrations of $PM_{2.5},\;PM_{10}$, TSP were $57.9{\pm}44.1mg/m^3$, $96.6{\pm}89.1mg/m^3$, and $114.8{\pm}99.7mg/m^3$, respectively. Water-soluble inorganic ion fractions to PM mass were found to be 36.5%, 18.0%, and 11.1% for $PM_{2.5}$, $PM_{10-2.5}$ and $PM_{over-10}$, respectively. By showing the high concentrations of PM samples during Asian dust events, those three fractions of PM were distinguished between the samples of Asian dust event and the samples of no event. However, the increase of PM concentrations observed during Asian dust events showed a different pattern for some Asian dust events. The differences of those three fractions in the size distribution may depend on differences on place of occurrence of Asian dust storm and course of transport from China continent to Iksan area in Korea. However, the extent of PM mass contribution during Asian dust events was generally dominated by the coarse particles rather than the fine fraction of PM. The variations of water-soluble inorganic ion species concentration in those three PM fractions between the samples of Asian dust event and the samples of no event were also discussed in this study.

A Study on Chemical Composition of Fine Particles in the Sungdong Area, Seoul, Korea (서울 성동구 지역 미세먼지의 화학적 조성에 관한 연구)

  • 조용성;이홍석;김윤신;이종태;박진수
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.665-676
    • /
    • 2003
  • To investigate the chemical characteristics of PM$\_$2.5/ in Seoul, Korea, atmospheric particulate matters were collected using a PM$\_$10/ dichotomous sampler including PM$\_$10/ and PM$\_$2.5/ inlet during the period of October 2000 to September 2001. The Inductively Coupled Plasma-Mass Spectromety (ICP-MS), ion Chromatography (IC) methods were used to determine the concentration of both metal and ionic species. A statistical analysis was performed for the heavy metals data set using a principal component analysis (PCA) to derived important factors inherent in the interactions among the variables. The mean concentrations of ambient PM$\_$2.5/ and PM/sub10/ were 24.47 and 45.27 $\mu\textrm{g}$/㎥, respectively. PM$\_$2.5/ masses also showed temporal variations both yearly and seasonally. The ratios of PM$\_$2.5/PM$\_$10/ was 0.54, which similar to the value of 0.60 in North America. Soil-related chemical components (such as Al, Ca, Fe, Si, and Mn) were abundant in PM$\_$10/, while anthropogenic components (such as As, Cd, Cr, V, Zn and Pb) were abundant in PM2s. Total water soluble ions constituted 30∼50 % of PM$\_$2.5/ mass, and sulfate, nitrate and ammonium were main components in water soluble ions. Reactive farms of NH$_4$$\^$+/were considered as NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ during the sampling periods. In the results of PCA for PM$\_$2.5/, we identified three principal components. Major contribution to PM$\_$2.5/ seemed to be soil, oil combustion, unidentified source. Further study, the detailed interpretation of these data will need efforts in order to identify emission sources.

Mass Concentration and Ion Composition of Size-segregated Particulate Matter during the Non-Asian Dust Storm of Spring 2007 in Iksan (익산지역에서 봄철 비황사기간 중 입경별 대기먼지농도와 이온조성)

  • Kang, Gong-Unn;Kim, Nam-Song;Lee, Hyun-Ju
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.300-310
    • /
    • 2008
  • In order to further determine the mass concentration and ion composition of size-segregated particulate matter (PM) during the non-Asian dust storm of spring, $PM_{2.5}$ (fine particle), $PM_{10-2.5}$ (coarse particle), and $PM_{over-10}$ (PM with an aerodynamic diameter larger than $10{\mu}m$) were collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in the spring season of 2007 in the Iksan area. During the sampling period from 5 April to 21 April, a total of 34 samples for size-segregated PM were collected, and then measured for PM mass concentrations by gravimetric measurements and for water-soluble inorganic ion species by using ion chromatography. Average mass concentrations of $PM_{2.5}$, $PM_{10-2.5}$, $PM_{over-10}$ were $35.4{\pm}11.5{\mu}g/m^3$, $13.3{\pm}5.5{\mu}g/m^3$ and $9.5{\pm}4.7{\mu}g/m^3$, respectively. On average, $PM_{2.5}$ accounted for 74% of $PM_{10}$. Compared with the literature from other areas in Korea, the measured concentration of $PM_{2.5}$ were relatively high. Water-soluble inorganic ion fractions in $PM_{2.5}$, $PM_{10-2.5}$, and $PM_{over-10}$ were found to be 47.8%, 28.5%, and 14.7%, respectively. Among the water-soluble inorganic ion species, $SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ were the main components in $PM_{2.5}$, while $NO_3^-$ dominantly existed in both $PM_{10-2.5}$ and $PM_{over-10}$. Non-seasalt $SO_4^{2-}$ (nss-$SO_4^{2-}$ and $NO_3^-$ were found to mainly exist as the neutralized chemical components of $(NH_4)_2SO_4$ and $NH_4NO_3$ in fine particles.

Characteristics of PM10, VOCs and Aldehydes Levels in Nail and Hair Shops (네일샵미용실의 실내공기 중 미세먼지(PM10), 휘발성 유기화합물 (VOCs), 알데하이드류(Aldehydes)의 농도 및 업소 특성에 따른 상관성 분석)

  • Lee, Boram;Kuag, Sooyoung;Yang, Wonho;Jun, Sang il;Kim, Jung-su;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.509-515
    • /
    • 2017
  • Objectives: The purpose of this study was to assess the indoor levels of $PM_{10}$, VOCs and aldehydes in nail shop and hair salon. Methods: The field survey was conducted for 52 hair salons 52 nail shops, and 26 shop-in-shops in Seoul and Daegu city. The field technicians investigated characteristics of each shop including operating time, indoor volume, ventilation and so on. Indoor concentrations of $PM_{10}$, VOCs and aldehydes, indoor temperature and humidity were measured in 12 hair salons, 12 nail shops and 6 shop-in shops. MP Surveryor II (Graywolf, USA) was used to measure $CO_2$ concentration, temperature and humidity for 8 hours. $PM_{10}$ concentrations were measured by minivolume air sampler with Teflon quartz filter ($0.2{\mu}m$ pore size, ${\varphi}$ 47 mm, Graseby-Anderson TEF-DISKTM) for 6 hours. VOCs passive sampler (OVM 3500) was used to collect VOCs for 8 hours and analyzed by GC/MSD. Results: The $CO_2$ concentrations were $759.4{\pm}58.2$ ppm in nail shops, $731.0{\pm}72.5$ ppm in hair salons, and $656.4{\pm}31.2$ ppm in shop-in-shops. The $PM_{10}$ concentrations were $27.5{\pm}14.2{\mu}g/m^3$ in nail shops, $33.1{\pm}6.3{\mu}g/m^3$ in hair salons, and $39.0{\pm}26.9{\mu}g/m^3$ in shop-in-shops. TVOCs concentrations were $3085.4{\pm}1667.8{\mu}g/m^3$ in nail shops, $2131.1{\pm}617.3{\mu}g/m^3$ in hair salons, and $1550.3{\pm}529.0{\mu}g/m^3$ in shop-in-shops. TVOCs concentrations in nail shops were significantly higher than those in hair salons and shop-in-shops (p=0.002). Formaldehyde concentrations were $60.8{\pm}36.6{\mu}g/m^3$ in nail shops, $89.1{\pm}55.4{\mu}g/m^3$ in hair salons, and $45.1{\pm}22.5{\mu}g/m^3$ in shop-in-shops. Conclusion: TVOCs concentrations in nail shop were the highest among others. TVOC concentrations in all stores exceeded indoor air quality stand of indoor air quality control in public-use facilities, etc act.

Study on the Characteristics of Concentrations and Compositions in $PM_{10}$ in Kunsan City (군산 지역에서 $PM_{10}$의 농도 및 성분 특성에 관한 연구)

  • 김성천;송재종;임성호;강달선
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.18-24
    • /
    • 2000
  • The collection of PM10 samples were collected by a PM10 hi-vol. air sampler from June, 1998 through May, 1999 in Kunsan located at western coastal region of Korea. We obtained 84 samples during sampling period. Samples were analyzed to quantify the concentration of ionic and metallic components such as SO42-, NO3-, Cl-, NH4+, K+, Na+, Mg2+, Zn, Cd, Cr, Pb and Fe. Seasonal variations of the concentrations by wind directions of each component were studied. We found that PM10 concentration had the highest level in winter and the lowest level in summer. When the wind direction is from west to east, the concentration of most ionic and metallic species were higher compared to reverse direction. That implied the effect of air pollutants from industrial area. Also, substantial amount of Na+ and Cl- were observed, which was assumed to the effect from the sea.

  • PDF

The Study on Secondary Pollutants of $PM_{10}$ in Pocheon (포천지역에서 측정한 $PM_{10}$중 2차 생성입자에 관한 연구)

  • Park Tae-Sool
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.9-20
    • /
    • 2005
  • The purpose of the study was characteristics of secondary pollutants of $PM_{10}$ collected in pocheon between August 2002 and June 2003. The ambient concentrations of $PM_{10}$ mass, 9 water-soluble anions and cations, and 13 bulk composition trace elements were determined from filter samples collected by $PM_{10}$ high volume air sampler(UV-15H, Graseby-Anderson Co., USA). During this period average $PM_{10}$ mass concentration was $83.8{\mu}g/m^3(49.8{\mu}g/m^3\~111.6{\mu}g/m^3)$ in Pocheon. Mechanism for transformation of secondary pollutants by soluble ion components is divided into two categories; $NaNO_3$ type by the reaction of sea salt and $HNO_3$ in the atmosphere, and nitrate salt or phosphate salt type such as $(NH_4)_2SO_4,\;NH_4NaSO_4,\;and\;(NH_4)_2SO_4(2NH_4O_3)$.

Characteristics of Gas- and Particle-phase Acids and $NH_3$ at Urban and Rural Sites in Korea

  • Ma Chang-Jin;Kim Hui-Kang;Kang Gong-Unn;Tohno Susumu;Kasahara Mikio
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.15-28
    • /
    • 2004
  • To study the characteristics of ammonia and the related compounds, atmospheric aerosols and gases were collected using a triple filter pack sampler, a low volume air sampler, and a three-stage Anderson air sampler in Seoul and Kangwha Island, Korea from Dec. 1996 to Oct. 1997. Ammonia concentrations showed approximately two times higher in summer than in winter at both sites. The highest $HNO_3$ levels were generally observed in summertime at two sampling sites. The average mass concentration of $PM_{2.5}$ in heavily industrialized Seoul was about three times higher than that of Kangwha. In winter, the sum of $NH_4^+$ and its counter ions (such as $Cl^-,\;NO_3^-$, and $SO_4^{2-}$) comprised $30-41\%$ of $PM_{2.5}$ mass concentration at each sampling site. Temperature dependence of particulate nitrate was examined at the urban sampling site. The formation of the nitrate in the fine mode was dependent not only on the amount of precursors but also on the variation of temperature. $(NH_4)_2SO_4$ and $NH_4HSO_4$ coexisted with $NH_4NO_3$ and $NH_4Cl$ at each site. According to the summertime backward trajectory analysis, $NO_3^-$ showed higher level with air parcels transported from northeast Asian continent. On the other hand, the concentration of $SO_4^{2-}$ showed significantly higher level when air masses originated from Pacific Ocean, southern part of Japan, and Korea.

Size Distributions of Atmospheric Particles in Cheonan, Korea

  • Oh, Se-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E1
    • /
    • pp.45-48
    • /
    • 2006
  • Mass size distributions of atmospheric particles in Cheonan were determined using a high volume air sampler equipped with a 5-stage cascade impactor. Bimodal distributions that are typical for urban atmospheric particles were obtained. A MMD of the fine particle mode was $0.47{\pm}0.05{\mu}m$ with a GSD of $2.72{\pm}0.21$, and those of the coarse particles were $5.15{\pm}0.18{\mu}m\;and\;2.09{\pm}0.09$, respectively. The annual average concentrations of TSP, PM10, PM2.5, and PM1 were 74.1, 67.5, 54.2, and $42.3{\mu}g/m^3$, respectively. Although the daily PM10 concentrations were under the current National Standard, the daily PM2.5 concentrations frequently exceeded the US Standard even in non asian dust periods. The fractions of PM 10, PM2.5, and PM1 in TSP were $0.905{\pm}0.013,\;0.723{\pm}0.022,\;and\;0.572{\pm}0.029$, respectively, and fine mode particles occupied $57{\sim}72%$ of the total particle mass. The results indicate that fine particles were at the concerning level, and should be the target pollutant for the regional air quality strategy in Cheonan.

Characteristics of PM2.5 in Gyeongsan Using Statistical Analysis (통계분석을 이용한 경산 지역의 초미세먼지(PM2.5) 농도 특성 파악)

  • Li, Kai Chao;Hwang, InJo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.520-529
    • /
    • 2015
  • The ambient $PM_{2.5}$ samples were collected by $PM_{2.5}$ sampler from September 2010 to December 2012 at Daegu University, Gyeongsan. A total of 260 samples were collected and 27 species were analyzed by inductively coupled plasma, ion chromatography, and thermal optical reflectance methods. Factor analysis identified four sources such as biomass burning source/secondary aerosol source, soil source, industry source, and incinerator source/mobile source. Also, backward trajectories were calculated using HYSPLIT 4 (Hybrid single-particle lagrangian integrated trajectory) model and PSCF (Potential source contribution function) model was applied to identify the possible source locations of carbonaceous species and water soluble ions species. PSCF results showed that the possible source locations of most chemical constituents measured in Gyeongsan were the industrial areas in the eastern coast of China, northeast regions of China, the Gobi Desert, and east sea of Korea.