• 제목/요약/키워드: PM Alloys

검색결과 85건 처리시간 0.02초

주조 형상기억 니켈-티타늄 합금의 초탄성 (SUPERELASTICITY OF CAST SHAPE MEMORY Ni-Ti ALLOY)

  • 최동익;최목균
    • 대한심미치과학회지
    • /
    • 제3권1호
    • /
    • pp.32-43
    • /
    • 1995
  • Ni-Ti alloy has excellent corrosion resistance, biocompatibility, shape memory effect and superelasticity, so it has been used widely in biomedical fields. But it has difficulty in casting due to its high melting temperature and oxygen affinity at high temperature. Recently it has been attempted to cast Ni-Ti alloy using new casting machine and investment. The purpose of this study was to examine the superelastic behavior of cast shape memory Ni-Ti alloy and to compare the mechanical properties of the cast shape memory alloy with those of commercial alloys for removable partial denture framework. Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was cast with dental argon-arc pressure casting machine and Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy, pure titanium were cast as reference. Experimental cast Ni-Ti alloy was treated with heat($500{\pm}2^{\circ}C$) in muffle furnace for 1 hour. Transformation temperature range of cast Ni-Ti alloy was measured with differential scanning calorimetry. The superelastic behavior and mechanical properties of cat Ni-Ti alloy were observed and evaluated by three point bending test, ultimate tensile test, Vickers microhardness test and scanning electron microscope. The results were as follows : 1. Cast Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was found to have superelastic behavior. 2. Stiffness of cast Ni-Ti alloy was considerably lesser than that of commercial alloys for removable partial denture. 3. Permanent deformation was observed in commercial alloys for removable partial denture framework at three point bending test over proportional limit(1.5mm deflection), but was not nearly observed in cast Ni-Ti alloy. 4. On the mechanical properties of ultimate tensile strength, elongation and Vickers microhardness number, cast Ni-Ti alloy was similiar to Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy and pure titanium. With these results, cast Ni-Ti alloy had superelastic behavior and low stiffness. Therefore, it is suggested that cast Ni-Ti alloy may be applicated to base metal alloy for removable partial denture framework.

  • PDF

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.

수종 합금의 도재 결합강도 (Bond-strength of several metal-meramic alloys and meneered-porcelain)

  • 이광훈;조영범;정재헌;김희중
    • 대한치과보철학회지
    • /
    • 제49권3호
    • /
    • pp.191-196
    • /
    • 2011
  • 연구 목적: 본 연구는 여러 가지 금속-도재 합금의 도재결합강도를 측정하여 임상에 적용하는 것이 적절한지 평가하고자 하였다. 연구 재료 및 방법: 금속도재소부 전장관으로 가장 많이 사용되는 Ni-Cr 합금(Group 1)과 75% 금합금(Group 2) 및 최근 도재금 합금으로 판매되고 있는 52.5% (Group 3), 51.5% (Group 4), 32% (Group 5), 10% 금합금(Group 6)이 시편으로 제작되었다. 시편은 각각 5개씩 제작되었으며, 제작된 시편에 전용 도재를 소성하고 3점 굴곡 시험을 통하여 도재와 각 금속간의 결합강도를 측정하였다. 결과: Group 1의 도재 결합강도가 $40.62{\pm}3.32$ MPa로 다른 실험군의 도재결합 강도에 비해 통계학적으로 유의성 있게 가장 높은 결합강도를 보였고(P<.05), 다음으로 Group 2가 $37.47{\pm}1.57$ MPa, Group 3이 $35.85{\pm}1.48$ MPa, Group 4가 $35.04{\pm}1.34$ MPa, Group 5가 $33.17{\pm}1.62$ MPa, Group 6가 $30.75{\pm}1.21$ MPa 순으로 결합강도가 감소하였다. Group 2, 3, 4 의 도재결합 강도는 Group 6와 통계학적으로 유의성을 보여주고 있으나(Duncan's test, P<.05), Group 3과 4는 Group 5와 서로 유의한 차이를 보이지 않았다(Duncan's test, P>.05). 도재 결합 강도 차이는 금 함량이 높을수록 강도가 높았고, 모든 실험군에서 ISO 9693에서 제시하는 기준치(25 MPa)보다 높은 수치를 나타내었다. 결론: 실험에 포함된 모든 합금들이 임상적으로 사용 가능할 것으로 추정된다.

In vitro evaluation of the bond strength between various ceramics and cobalt-chromium alloy fabricated by selective laser sintering

  • Bae, Eun-Jeong;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권4호
    • /
    • pp.312-316
    • /
    • 2015
  • PURPOSE. This study aimed to present the clinical applicability of restorations fabricated by a new method, by comparing the bond strength of between ceramic powder with different coefficient of thermal expansion and alloys fabricated by Selective laser sintering (SLS). MATERIALS AND METHODS. Fifty Co-Cr alloy specimens ($25.0{\times}3.0{\times}0.5mm$) were prepared by SLS and fired with the ceramic ($8.0{\times}3.0{\times}0.5mm$) (ISO 9693:1999). For comparison, ceramics with different coefficient of thermal expansion were used. The bond strength was measured by three-point bending testing and surfaces were observed with FE-SEM. Results were analyzed with a one-way ANOVA (${\alpha}$=.05). RESULTS. The mean values of Duceram Kiss ($61.18{\pm}6.86MPa$), Vita VM13 ($60.30{\pm}7.14MPa$), Ceramco 3 ($58.87{\pm}5.33MPa$), Noritake EX-3 ($55.86{\pm}7.53MPa$), and Vintage MP ($55.15{\pm}7.53MPa$) were found. No significant difference was observed between the bond strengths of the various metal-ceramics. The surfaces of the specimens possessed minute gaps between the additive manufactured layers. CONCLUSION. All the five powders have bond strengths higher than the required 25 MPa minimum (ISO 9693); therefore, various powders can be applied to metal structures fabricated by SLS.

Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique

  • Dimitriadis, Konstantinos;Spyropoulos, Konstantinos;Papadopoulos, Triantafillos
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권1호
    • /
    • pp.25-31
    • /
    • 2018
  • PURPOSE. The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. MATERIALS AND METHODS. Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity (E) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. RESULTS. Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was $222{\pm}5.13GPa$ and $227{\pm}3GPa$, respectively. The bond strength was $51.87{\pm}7.50MPa$ for test group and $54.60{\pm}6.20MPa$ for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. CONCLUSION. Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use.

Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces

  • Ozer, Fusun;Pak-Tunc, Elif;Dagli, Nesrin Esen;Ramachandran, Deepika;Sen, Deniz;Blatz, Markus Bernhard
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.340-346
    • /
    • 2018
  • PURPOSE. In this study, the shear bond strengths (SBS) of luting cements to fixed superstructure metal surfaces under various seating forces were investigated. MATERIALS AND METHODS. Seven different cements [Polycarboxylate (PCC), Glass-Ionomer (GIC), Zinc phospahate (ZPC), Self-adhesive resin (RXU), Resin (C&B), and Temporary cements ((RXT) and (TCS))] were bonded to a total number of 224 square blocks ($5{\times}5{\times}3mm$) made of one pure metal [Titanium (CP Ti) and two metal alloys [Gold-Platinum (Au-Pt) and Cobalt-Chrome (Co-Cr)] under 10 N and 50 N seating forces. SBS values were determined and data were analyzed with 3-way ANOVA. Pairwise comparisons and interactions among groups were analyzed with Tukey's simultaneous confidence intervals. RESULTS. Overall mean scores indicated that Co-Cr showed the highest SBS values ($1.96{\pm}0.4$) (P<.00), while Au-Pt showed the lowest among all metals tested ($1.57{\pm}0.4$) (P<.00). Except for PCC/CP Ti, RXU/CP Ti, and GIC/Au-Pt factor level combinations (P<.00), the cements tested under 10 N seating force showed no significantly higher SBS values when compared to the values of those tested under 50 N seating force (P>.05). The PCC cement showed the highest mean SBS score ($3.59{\pm}0.07$) among all cements tested (P<.00), while the resin-based temporary luting cement RXT showed the lowest ($0.39{\pm}0.07$) (P<.00). CONCLUSION. Polycarboxylate cement provides reliable bonding performance to metal surfaces. Resin-based temporary luting cements can be used when retrievability is needed. GIC is not suitable for permanent cementation of fixed dental prostheses consisting of CP Ti or Au-Pt substructures.

Fe계 벌크 비정질 합금을 이용한 레이저 용접층의 파손 거동 (Failure Behavior of Laser Cladding Layer used by Fe-based Bulk Metallic Glass)

  • 임병철;김대환;박상흡
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.5743-5747
    • /
    • 2015
  • 본 연구에서는 가스아토마이저로 제조된 Fe계 벌크비정질 합금 분말을 이용하여 제작된 시험편에 레이저 육성용접을 하였고, 인장시험과 경도시험의 실시 및 미세조직을 관찰하여 육성용접 층의 파괴거동을 분석하였다. 인장시험 결과 육성용접층은 탄성변형 후 바로 파괴가 일어났고, 모재는 소성변형 후 파괴가 일어났다. 육성용접층과 모재의 실제 최대인장강도는 각 각 955.9Mpa과 220.4Mpa이다. 육성용접층과 모재의 미소경도는 각 각 $485.5{\pm}21$$197.4{\pm}14$ 이었고, 육성용접층은 매우 높은 경도를 갖는다. 모재는 조대한 결정립을 갖는 미세 구조를 나타내었다. 인장시험 후 파단면을 고분해능주사전자현미경으로 관찰한 결과 육성용접층과 모재의 파괴형태는 각각 취성파괴와 연성파괴를 나타내었다.

Titanium Ions Released from Oral Casting Alloys May Contribute to the Symptom of Burning Mouth Syndrome

  • Park, Yang Mi;Kim, Kyung-Hee;Lee, Sunhee;Jeon, Hye-Mi;Heo, Jun-Young;Ahn, Yong-Woo;Ok, Soo-Min;Jeong, Sung-Hee
    • Journal of Oral Medicine and Pain
    • /
    • 제42권4호
    • /
    • pp.102-108
    • /
    • 2017
  • Purpose: Many metal ions released from dental casting alloys have been reported to influence the intraoral symptoms of oral lichen planus (OLP) and burning mouth syndrome (BMS). The aim of this study was to investigate the relationship between salivary metal ion levels and the prosthetic duration as well as to evaluate the time-dependent morbid effects of metal ions in OLP and BMS patients. Methods: Three study groups consist of the following subjects respectively: 17 OLP patients, 12 BMS patients, and 12 patients without oral symptoms. The salivary concentrations of 13 metal ions (copper, cobalt, zinc, chromium, nickel, aluminum, silver, iron, titanium [Ti], platinum, tin, palladium, and gold) were measured by Laser Ablation Microprobe Inductively coupled Plasma Mass Spectrometry. Results: The Ti ions had statistically significant differences among the groups with a prosthetic duration of less than 5 years. There were no significant differences between all ion levels among the groups wearing dental cast alloys for over 5 years. In the BMS group, the level of Ti ions in patients with prosthetic restorations less than 5 years old were significantly high (p<0.05). Conclusions: In the BMS group, 3-60 months during which salivary Ti levels were higher were matched with the duration of burning symptoms ($15.6{\pm}17.1months$). Furthermore, Ti ions were statistically high in the oral cavity of BMS patients fitted with dental casting alloys for 5 years. These results suggest that Ti ions released from dental implants and oral prostheses could attribute to burning sensation of BMS.

MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression)

  • 황승준
    • 열처리공학회지
    • /
    • 제26권6호
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

레이저 용접시 분광학적 수법에 의한 증발입자의 거동과 플라즈마 물성의 계측 (Evaporating Particle Behaviors and plasma Parameters by Spectroscopic Method in laser Welding)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.514-522
    • /
    • 1999
  • The laser-induced plasma affects greatly on the results of welding process. moreover selective evaporation loss of alloying elements leads to change in chemical composition of weld metal as well as the mechanical properties of welded joint. this study was undertaken to obtain a fundamental knowledge of pulsed laser welding phenomena especially evaporation mechanism of different aluminum alloys. The intensities of molecular spectra of AlO and MgO were different each other depeding on the power density of a laser beam Under the low power density condition the MgO band spectrum was predominant in intensity while the AlO spectra became much stronger with an increase in the power density. These behaviors have been attributed to the difference in evaporation phenomena of Al and Mg metals with different boiling points and latent heats of vaporization. The time-averaged plasma temperature and electron number density were determined by spectroscopic methods and consequently the obtained temperature was $3,280{\pm}150K$ and the electron number density was $1.85{\times}10^{19}\;l/m^3$.

  • PDF