• 제목/요약/키워드: PM(particulate matter)

검색결과 820건 처리시간 0.026초

두파장 스캐닝 라이다 시스템을 이용한 고해상도 미세먼지 질량 농도 산출 (High Resolution Fine Dust Mass Concentration Calculation Using Two-wavelength Scanning Lidar System)

  • 노영민;김덕현;최성철;최창기;김태경;김가형;신동호
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1681-1690
    • /
    • 2020
  • 532와 1064 nm 두 파장 관측 채널을 구비하고 수평으로 360° 스캐닝 관측이 가능한 스캐닝 라이다 시스템을 개발하였다. 또한, 두 파장에서의 후방산란계수를 이용하여 미세먼지를 PM2.5-10(조대)와 PM2.5(미세)입자로 구분하는 분석도 개발하여 스캐닝 라이다 시스템의 데이터 분석에 적용하였다. 개발된 스캐닝 라이다를 이용한 울산 온산공단에서 관측에서 각각 22 - 110 ㎍/㎥과 7 - 78 ㎍/㎥의 분포를 보이는 PM10과 PM2.5의 질량 농도를 성공적으로 산출하였다. 분석된 결과는 라이다 관측 영역 주변에서 지상에서 측정된 질량농도와 유사한 값을 보였으며, 공장 등에서 배출되는 지점에서는 이 각각 80-110 ㎍/㎥과 60-78 ㎍/㎥의 고농도가 측정되는 사례를 확인하였다.

PM 관측을 위한 스파르탄 시스템 (Introducing SPARTAN Instrument System for PM Analysis)

  • 엄수진;박상서;김준;이서영;조예슬;이승재
    • 대기
    • /
    • 제33권3호
    • /
    • pp.319-330
    • /
    • 2023
  • As the need for PM type observation increases, Surface Particulate Matter Network (SPARTAN), PM samplers analyzes aerosol samples for PM mass concentration and chemical composition, were recently installed at two sites: Yonsei University at Seoul and Ulsan Institute of Science and Technology (UNIST) at Ulsan. These SPARTAN filter samplers and nephelometers provide the PM2.5 mass concentration and chemical speciation data with aerosol type information. We introduced the overall information and installation of SPARTAN at the field site in this study. After installation and observation, both Seoul and Ulsan sites showed a similar time series pattern with the daily PM2.5 mass concentration of SPARTAN and the data of Airkorea. In particular, in the case of high concentrations of fine particles, daily average value of PM2.5 was relatively well-matched. During the Yonsei University observation period, high concentrations were displayed in the order of sulfate, black carbon (BC), ammonium, and calcium ions on most measurement days. The case in which the concentration of nitrate ions showed significant value was confirmed as the period during which the fine dust alert was issued. From the data analysis, SPARTAN data can be analyzed in conjunction with the existing urban monitoring network, and it is expected to have a synergetic effect in the research field. Additionally, the possibility of being analyzed with optical data such as AERONET is presented. In addition, the method of installing and operating SPARTAN has been described in detail, which is expected to help set the stage for the observation system in the future.

석탄 화력 보일러에서의 응집제 이용에 따른 초미세먼지 거동 (Effect of Coagulants on the Behavior of Ultra Fine Dust in a Coal Firing Boiler)

  • 류환우;송병호
    • 공업화학
    • /
    • 제31권1호
    • /
    • pp.84-89
    • /
    • 2020
  • 초미세먼지로 분류되는 PM2.5 (particulate matter under 2.5 ㎛) 중에서도 특히 sub-micron 입자(0.1~1.0 ㎛)의 먼지는 브라운 운동(Brownian motion)으로 집진장치의 효율에 한계를 준다. 따라서 수산화나트륨으로 활성화된 알루미늄산나트륨(NaAlO2)을 응집제(coagulant)로 선택하여 석탄을 사용하는 유동층 보일러에서 석탄의 회분에 포함된 칼륨(K)과 PM2.5의 입도분포의 거동과 영향을 확인하고자 했다. 그리고 응집제를 석탄의 무게대비 1,200 : 1 비율로 석탄에 혼합 및 분사하면서 정상 운전하는 중에 보일러의 싸이클론에서의 미세먼지(FP)와 전기집진기에서의 미세먼지(EP)를 포집 및 고찰하였다. 포집한 미세먼지를 입도분석기를 이용하여 입도분포(%)를 분석한 결과 FP에서 평균 4.87%에서 0.51%로 변화를 보임으로써 89.53% 감소하였다. EP에서의 평균 3.46%에서 0.40%로 변화를 보임으로써 88.57% 감소하였다. 포집한 미세먼지를 XRP로 칼륨을 추적한 결과 칼륨의 변화율은 FP에서 평균 1.65%에서 1.87%로 13.33% 증가하고, EP에서 평균 1.65%에서 2.03%로 17.68% 증가하였다. TMS에 의해서 확인된 총 미세먼지 농도(mg/㎥)는 1차는 2.6 mg/㎥에서 1.7~1.9 mg/㎥로 26.9~34.6% 감소하였으며, 2차는 평균 2.9 mg/㎥에서 1.7~1.9 mg/㎥로 33.3~40.4%가 감소하였다. 따라서 본 연구의 응집제가 PM2.5 초미세먼지 입자의 크기와 그로 인한 집진장치효율에 크게 영향을 미치는 것으로 확인하였다.

중소도시, 대도시 및 산업지역에서 채취한 미세분진 ($PM_{2.5}$)과 입자상 다환방향족탄화수소의 계절적인 분포 특성 (Characteristics of Seasonal Distributions of Fine Particles ($PM_{2.5}$) and Particle-Associated Polycyclic Aromatic Hydrocarbons in Urban, Metropolitan and Industrial Complex Sites)

  • 김희갑;정경미;김태식
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권1호
    • /
    • pp.45-56
    • /
    • 2006
  • This study was conducted to investigate seasonal distributions of fine particles ($PM_{2.5}$) and associated polycyclic aromatic hydrocarbons (PAHs) at three cities. $PM_{2.5}$ samples were collected on glass fiber filters at urban (Chuncheon), metropolitan (Seoul), and industrial complex sites (Ulsan) from September, 2002 to February, 2004 using the Andersen FH 95 Particulate Sampler. About five 24-hour samples were collected from each site per season. The filters were analyzed for mass and six selected PAHs concentrations. $PM_{2.5}$ concentrations were the highest either in winter or spring, which could be attributed to the increase of fossil fuel combustion in winter or the transport of yellow sand to the Korean peninsula from China in spring, respectively. Regional $PM_{2.5}$ concentrations were higher in the order of Seoul>Chuncheon>Ulsan without statistical difference among cities. The filters were extracted using dichloromethane in an ultrasonicator and analyzed for six PAHs (anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, and benzo[a]pyrene) with HPLC. Total PAHs concentrations were statistically different among seasons in each site, and the highest concentrations were observed in winter at each sampling site. For total samples collected, the median total PAHs concentrations in Chuncheon ($4.6ng/m^3$) and Seoul ($4.4ng/m^3$) were approximately two times higher than that in Ulsan ($2.1ng/m^3$). Chrysene was a component found in the highest proportion among total PAHs at each site. Carcinogenic risks calculated based on the BaP toxic equivalency factors (TEFs) over the whole sampling period were higher in the order of Chuncheon>Seoul>Ulsan. This study suggests that the atmosphere of Chuncheon is contaminated with particulate matter and PAHs at the levels equivalent to those of Seoul and that an appropriate measure needs to be taken to mitigate human health risks from inhalation exposure to airborne fine particles.

북동태평양 KODOS 해역의 유기탄소 및 겉보기산소량 특성 (Characteristics of Organic Carbon and Apparent Oxygen Utilization in the NE Pacific KODOS Area)

  • 손주원;손승규;김경홍;김기현;박용철;김동화;김태하
    • Ocean and Polar Research
    • /
    • 제27권1호
    • /
    • pp.1-13
    • /
    • 2005
  • The samples for organic carbon analysis were collected between $5^{\circ}\;and\;17^{\circ}N$ along $131.5^{\circ}W$ in the northeast Pacific KODOS (Korea Deep Ocean Study) area. The mean concentration of total organic carbon (TOC) in the surface mixed layer $({\sim}50 m)$ was $100.13{\pm}2.05{\mu}M-C$, while the mean concentration of TOC in the lower 500m of the water column was $50.19{\pm}4.23{\mu}M-C$. A strong linear regression between TOC and temperature $(r^2=0.70)$ showed that TOC distribution was controlled by physical process. Results from the linear regression between chlorophyll-a and TOC, and between chlorophyll-a and particulate organic carbon (POC), decreasing of dissolved organic carbon (DOC) in the surface layer caused by non-biological photo-oxidation process. Below the surface layer, biological production and consumption occurred. DOC accumulation dominated in the depth range of $30{\sim}50m$ and DOC consumption occurred in the depth range of $50{\sim}200m$. TOC was inversely correlated with apparent oxygen utilization (AOU) and TOC/AOU molar ratios ranged from -0.077 to -0.21. These ratios indicated that TOC oxidation was responsible fur $10.9{\sim}30.1%$ (mean 20.2%) of oxygen consumption in the NE Pacific KODOS area. In the euphotic zone, distributions of dissolved and particulate organic matter were controlled by photo-chemical, chemical, biological and physical processes.

실습선 한바다호 주기관 배기가스 배출물질 특성 고찰에 관한 연구 (A Study on the Characteristics Measurement of Main Engine Exhaust Emission in Training Ship HANBADA)

  • 최정식;이상득;김성윤;이경우;천강우;남연우;정균식;박상균;최재혁
    • 해양환경안전학회지
    • /
    • 제19권6호
    • /
    • pp.658-665
    • /
    • 2013
  • 본 연구에서는 국제해사기구(IMO)의 뜨거운 관심분야로 부상되고 있는 선박기인 입자상물질(PM)과 오염물질 배출에 관하여 한국해양대학교 실습선 한바다호를 이용하여 계측하였다. 특히, PM은 TEM 그리드를 이용해 채취하고 전자현미경으로 구조를 파악하였으며, NOx, $CO_2$, CO 등의 배기가스는 연소가스분석기(PG-250A, HORIBA)를 이용해 측정하였다. 본 연구의 결과는 다음과 같다. 1) 선박이 항구에서 출항할 때, Bunker Change로 인한 PM 배출량은 최대 30 % 정도 차이가 있었다. 2) 정속 운항을 하면서 Bunker-A에서 L.R.F.O(3 %)로 변경할 때 측정한 PM 배출량은 $1.34mg/m^3$, L.R.F.O(3 %)로 고정해 측정한 PM 배출량은 $1.19mg/m^3$, L.R.F.O(3 %)만 사용하며 주기관 회전수를 20 % 증가시키면서 계측한 PM 배출량은 $1.40mg/m^3$ 이었다. 또한, 저질유(L.R.F.O(3 %))로 변경시 CO 농도는 약 16 % 증가하는데 비해 RPM을 20 % 상승시킨 경우에는 152 % 이상 급격한 증가를 보였다. 이러한 결과로부터 배기가스 배출의 증가는 연료유종의 영향도 있으나, RPM의 변화에 민감하다는 것을 알 수 있었다. 3) TEM 그리드로 채취한 PM은 약 $4{\sim}10{\mu}m$ 정도의 다양한 입경을 가지는 다공질 응집체 형상의 구조인 것으로 확인하였다.

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권2호
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

$PM_{10}$ Exposure and Non-accidental Mortality in Asian Populations: A Meta-analysis of Time-series and Case-crossover Studies

  • Park, Hye Yin;Bae, Sanghyuk;Hong, Yun-Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • 제46권1호
    • /
    • pp.10-18
    • /
    • 2013
  • Objectives: We investigated the association between particulate matter less than $10{\mu}m$ in aerodynamic diameter ($PM_{10}$) exposure and non-accidental mortality in Asian populations by meta-analysis, using both time-series and case-crossover analysis. Methods: Among the 819 published studies searched from PubMed and EMBASE using key words related to $PM_{10}$ exposure and non-accidental mortality in Asian countries, 8 time-series and 4 case-crossover studies were selected for meta-analysis after exclusion by selection criteria. We obtained the relative risk (RR) and 95% confidence intervals (CI) of non-accidental mortality per $10{\mu}g/m^3$ increase of daily $PM_{10}$ from each study. We used Q statistics to test the heterogeneity of the results among the different studies and evaluated for publication bias using Begg funnel plot and Egger test. Results: Testing for heterogeneity showed significance (p<0.001); thus, we applied a random-effects model. RR (95% CI) per $10{\mu}g/m^3$ increase of daily $PM_{10}$ for both the time-series and case-crossover studies combined, time-series studies relative risk only, and case-crossover studies only, were 1.0047 (1.0033 to 1.0062), 1.0057 (1.0029 to 1.0086), and 1.0027 (1.0010 to 1.0043), respectively. The non-significant Egger test suggested that this analysis was not likely to have a publication bias. Conclusions: We found a significant positive association between $PM_{10}$ exposure and non-accidental mortality among Asian populations. Continued investigations are encouraged to contribute to the health impact assessment and public health management of air pollution in Asian countries.

남동권 초고농도 미세먼지 발생 특성과 비상저감조치 - 수도권과 비교연구 (II) (Characteristics of Extremely High PM2.5 Episode and Emergency Reduction Measures Plan in Southeastern Region - Comparative Study in Busan vs. Seoul Metropolitan Area (II))

  • 최다니엘;허국영;김철희
    • 한국환경과학회지
    • /
    • 제30권10호
    • /
    • pp.789-802
    • /
    • 2021
  • This study analyzed the characteristics of high PM2.5 episodes that meets the concentration criteria of Emergency Reduction Measures Plan (ERMP) in Busan during the 2015-2020, and compared with those in Seoul. As a first step, the CAPSS-2017 emission data was employed to analyze the emission differences between Busan and Seoul, and pointed out that Busan emission included the dominance of ship emissions (37.7%) among total PM2.5 city emissions, whereas fugitive PM2.5 emission was the highest in Seoul. These emission characteristics are indicating that the controlling action plan should be uniquely applied to cope with ERMP in each region. We selected extremely high PM2.5 episode days that meet the criteria of ERMP levels. In Busan, Ulsan, and Gyeongnam region, 15, 16, and 8 days of extremely high PM2.5 cases were found, respectively, whereas Seoul showed approximately doubling of occurrences with 37 cases. However, the occurrences in summer season indicated big differences between two cities: the proportion of summer-season occurrence was 13-25% in Busan, whereas no single case have occurred in Seoul. This is suggesting the needs of comprehensive summer emission reduction plan with focusing on sulfur reduction to effectively cope with the ERMP levels in summer in the southeastern region, including Busan.

도시녹지 미세먼지 조절 서비스 수요와 공급의 공간적 차이 분석 - 수원시를 대상으로 - (Spatial Analysis on Mismatch Between Particulate Matter Regulation Services Supply and Demand in Urban Area - A Case Study of Suwon -)

  • 강다인;권혁수;최태영;박찬;김성훈
    • 한국환경복원기술학회지
    • /
    • 제24권2호
    • /
    • pp.57-69
    • /
    • 2021
  • Urban green spaces supply ecosystem services (ESs), which are consumed by city residents and generate demand, to improve air quality. It is important to determine supply and demand for ESs and reduce the gap for efficient management. This study proposed a method to use the concept of supply and demand for ESs in the decision-making process for urban planning or management. PM10 concentrations were converted to weight for demand assessment on PM10 reduction, and PM10 absorption capacity of all green spaces including the forests, and that of urban green spaces excluding forests, was calculated for each supply assessment. The differences in the calculated supply and demand were analyzed to derive the mismatched regions in Suwon. As a result, regions with big forested areas showed sufficient supply, indicating that the degree of mismatch among administrative neighborhoods (dong) varied greatly depending on whether they had a forest. An analysis of only urban green spaces showed that all neighborhoods lacked supply. Forests with high PM10 absorption capacity had a great effect, but urban green spaces can be considered a key element in reducing PM10 in daily life. Considering the mismatch of supply and demand, spatial distribution, and population distribution, it is possible to prioritize the supply of urban green spaces to reduce PM10 and, furthermore, support decision making for priority zones subject to forest conservation and designation and cancellation of green spaces, which gives significance to this study.