Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1262-1262
/
2001
The rice plant is one of the important staple crops in Korea. The high yield with low cost in rice is required the soil fertility and the development of new precise method of fertilizer application by nutritional diagnosis. Now, in Korea, the nitrogen application system for the rice plant is composed of the basal fertilization, fertilization at tillering stage and fertilization at panicle stage, which the nitrogen fertilization at panicle stage amount to about 30 percent in the total amount. Thus, this experiment carried out to the development of the system that can measure the nitrogen content in the rice plant at panicle stage rapidly with the near infrared spectroscopy, and to predict the appropriate quantity of the nitrogen fertilization at panicle stage based on calibration model for test of nitrogen content in rice plant. The samples were collected from 48 varieties in 4 regions which are mainly cultivated in the southern part of Korea. And then, it collected by classifying into the leaf, the whole plant and the stem since 7 days before the nitrogen fertilization at panicle stage. The ranges of the nitrogen contents were 1.6∼4.0%, 1.7∼3.0% and 1.4∼2.7% in the leaf, the whole plant and the stem, respectively. In the calibration models created by each part of the plant under the Multiple Linear Regression(MLR) method, the calibration model for the leaf recorded the relatively high accuracy. The mutual crossing test on unknown samples were carried out using Partial Least Square(PLS) calibration model. That is, the nitrogen content in the stem was tested by calibration model made by the leaf model and that of stem was tested by calibration model made by whole plant sample. When unknown leaf sample was tested by calibration model made by all sample that collected from each part in rice plant such as leaf, stem and whole plant, it recorded the highest accuracy. As a result, to test the nitrogen content in the rice plant at panicle stage, the nitrogen content in the leaf shall be tested by the calibration model composed of the leaf, the stem and the whole plant. In future, to estimated the amount of nitrogen fertilization at panicle stage for rice plant , it will be calculated based on regression model between rice yield and nitrogen content of leaf measured by calibration model made by mixed sample including leaf, stem and whole plant.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1281-1281
/
2001
Near-infrared (NIR) spectra have bean measured for high-density (HDPE), linear low-density (LLDPE), and low-density (LDPE) polyethylene in pellet or thin films. The obtained spectra have been analyzed by conventional spectroscopic analysis methods and chemometrics. By using the second derivative, principal component analysis (PCA), and two-dimensional (2D) correlation analysis, we could separate many overlapped bands in the NIR. It was found that the intensities of some bands are sensitive to density and crystallinity of PE. This may be the first time that such bands in the NIR region have ever been discussed. Correlations of such marker bands among the NIR spectra have also been investigated. This sort of investigation is very important not only for further understanding of vibration spectra of various of PE but also for quality control of PE by vibrational spectroscopy. Figure 1 (a) and (b) shows a NIR reflectance spectrum of one of the LLDPE samples and that of PE, respectively. Figure 2 shows a PC weight loadings plot of factor 1 for a score plot of PCA for the 16 kinds of LLDPE and PE based upon their 51 NIR spectra in the 1100-1900 nm region. The PC loadings plot separates the bands due to the $CH_3$ groups and those arising form the $CH_2$ groups, allowing one to make band assignments. The 2D correlation analysis is also powerful in band enhancement, and the band assignments based upon PCA are in good agreement with those by the 2D correlation analysis.(Figure omitted). We have made a calibration model, which predicts the density of LLDPE by use of partial least square (PLS) regression. From the loadings plot of regression coefficients for the model , we suggest that the band at 1542, 1728, and 1764 nm very sensitive to the changes in density and crystalinity.
China has become the group of two (G2) in almost fields including the scientific technology following the economic growth and joining the WTO in 2001. The main reason is that the government had strong intention for the industrialization of the scientific technology and connected the scientific technology and the economy. Typically, for analyzing the cause of the meteoric rise of China, the competitiveness of the scientific technology was analyzed by the entire score of the nation. However, in the case of China, there are differences in the pattern of the development between the eastern, central, and western province. Also, the industrialization and the competitiveness of the scientific technology are difference because each province established the decentralization of power. Therefore, it is more meaningful to analyze the main factors of Chinese economic growth on a province unit. In this study, therefore, we analyzed the competitive of R&D in China by 124 indexes in 31 areas. The data was analyzed by Partial least squares regression analysis. In conclusion, the scale of the area and the ability of R&D of the company are very important factors for total amount of production in the area. And the journals, patents, the transfer of technical know-how and the investment of R&D are main factors of the amount of export on the high-tech product. According to these results, the factors which make the difference in the industrialization and the competitiveness of the scientific technology in China were analyzed. Finally, it will be helpful to establish the policy for the development of the industrialization and the scientific technology in Korea.
The moisture content of sawdust must be measured accurately and controlled appropriately during storage and transportation because biological degradation could be caused by improper moisture. In this study, to measure the moisture contents of Larix kaempferi sawdust, the near-infrared reflectance spectra (Wavelength 1000-2400 nm) of sawdust were used as detection parameter. After acquiring the NIR reflection spectrum of specimens which were humidified at each relative humidity condition ($25^{\circ}C$, RH 30~99%), moisture content prediction model was developed using mathematical preprocessings (e.g. smoothing, standard normal variate) and partial least squares (PLS) analysis with the acquired spectrum data. High reliability of the MC regression model with NIR spectroscopy was verified by cross validation test ($R^2$ = 0.94, RMSEP = 1.544). The results of this study show that NIR spectroscopy could be used as a convenient and accurate method for the nondestructive determination of moisture content of sawdust, which could lead to optimize wood utilization.
Journal of the Korean Institute of Landscape Architecture
/
v.45
no.6
/
pp.62-75
/
2017
This study analyzes the multiple effects of the following three aspects of waterscape facilities within apartment complexes: planning/designing, maintenance/management, and use of the facilities and suggests primary documents that will be fundamental for the methods to accelerate the implementation of waterscape facilities. A survey and analysis was conducted among a few of the most representative private apartment complexes in Seoul in accordance with the management and operation of waterscape facilities. The analysis used frequency analysis, descriptive statistics, reliability test, t-test, and PLS regression analysis. The research findings are as follows: first, the degree of use of waterscape facilities was found to be low regardless of the levels of operation, but residents' preference for the facilities was shown to be high, thus indicating there are still high expectations on the part of residents. Second, regardless of whether the facilities are being operated efficiently, the two items of location and display method under the section of planning and designing and the two items of aptitude and convenience under the section of use were found to positively affect the operation and use of waterscape facilities. Particularly, the item of freshness, cleanliness was shown to be directly and indirectly correlated with obsolescence, administration costs, and noise, which negatively affect the operation. Third, it was found that the administration costs itself that had been shown as the most negative factor of operating landscaping facilities in previous research did not cause problems in the residential area where the facilities are not operated efficiently. The finding suggests that the administration costs do not matter but that in the case of experience- and entertainment-typed facilities that residents want, they are linked to problems that do not introduce the desired facilities. Fourth, it was found that various aspects of planning, designing, maintaining, and using facilities interconnect and affect one another in the process of operating and using waterscape facilities resulting in the need to have a comprehensive approach to these three factors of planning, design, maintenance, management, and utilization. This study proposes that the needs and values of residents should be reflected to activate the introduction of landscaping facilities in the apartment complexes.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1527-1527
/
2001
Glucose, fructose and sucrose being the main sugars that can be found in natural fruit juice. Many instrumental methods, such as GC, LC, electrochemical or spectrometric methods provide information about both the total content of sugars and the specific concentration of each carbohydrate[1]. The simplicity of sample handling and measurement in the near IR(NIR) wavelength region, which allows the use of long pathlength, optical glass cells and optical fibers, makes NIR a good alternative for sugar determination [2]. In the present study, six varieties of persian grapes were harvested at intervals through august to october and analysed for sugars by NIR. The results were processed by principal component regression (PCR) and partial least squares (PLS) analysis. Sample juice was prepared by squeezing through gauze from crashed grape. This solution was treated by zinc ferrocyanide prior to analysis in order to eliminate colored compounds and all optically active nonsugar substances. For glucose and fructose the most characteristic wavelengths were 1456nm corresponding to the first harmonic O-H stretching and the second at 2062nm corresponding to O-H stretching and deformation; secondary characteristic combination bands were also seen at 2265 nm (O-H and C-C stretching) and at 2240 nm (C-H and C-C stretching). However these spectra were taken over a wavelength range from 1100-2500nm at room temperature of 25-$30^{\circ}C$. To test the accuracy of the described procedure, samples of six varieties of grape were analysed by the proposed NIR and a standard method[2]. Good agreement were found between these two sets of the results. To perform the recovery studies , samples of grape juices previously analysed by the proposed method, were spiked with known amounts of each individual sugars and then analysed again. Relative standard deviations varied from 1.4 to 1.8% for six independent measurements of individual and total sugar concentration. In the analysis of real and synthetic samples, precise and accurate results were obtained , providing accuracy errors lower than 1.9% in all cases. Average recoveries of ${97}{\pm}{4%}$ for total sugar and between ${95}{\pm}{5%}$ and ${99}{\pm}{2%}$ for sing1e sugars demonstrate the applicability of the methodology developed to the direct analysis of grape Juice.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1273-1273
/
2001
The efficiency of the luminal fermentation process influences overall efficiency of luminal production, animal health and reproduction. Ruminant production systems have a significant impact on the global environment, as well. Animal wastes contribute to pollution of the environment as ammonia volatilized to the air and nitrate leached to ground water. Microbial protein synthesis in the rumen satisfies a large proportion of the protein requirements of animals. Quantifying the microbial synthesis is possible by using markers for lumen bacteria and protozoa such as nucleic acids, purine bases, some specific amino acids, or by isotopic $^{15}N,^{32}P,\;and\;^{35}S$ labelled feeds. All those methods require cannulated animals, they are time-consuming and some methods are very expensive as well. Many attempts have been made to find an alternative method for indirect measurement of microbial synthesis in intact animals. The present investigations aimed to assess possibilities of NIRS for prediction of purine nitrogen excretion and ruminal microbial nitrogen synthesis by NIR spectra of urine. Urine samples were collected from 12 growing sheep,6 of them male, and 6- female. The sheep were included in feeding experiment. The ration consisted of sorghum silage and protein supplements -70:30 on dry matter basis. The protein supplements were chosen to differ in protein degradability. The urine samples were collected daily in a vessel containing $60m{\ell}$ 10% sulphuric acid to reduce pH below 3 and diluted with tap water to 4 liters. Samples were stored in plastic bottles and frozen at $-20^{\circ}C$ until chemical and NIRS analysis. The urine samples were analyzed for purine derivates - allantoin, uric acid, xantine and hypoxantine content. Microbial nitrogen synthesis in the lumen was calculated according to Chen and Gomes, 1995. Transmittance urine spectra with sample thickness 1mm were obtained by NIR System 6500 spectrophotometer in the spectral range 1100-2500nm. The calibration was performed using ISI software and PLS regression, respectively. The following statistical results of NIRS calibration for prediction of purine derivatives and microbial protein synthesis were obtained.(Table Omitted). The result of estimation of purine nitrogen excretion and microbial protein synthesis by NIR spectra of urine showed accuracy, adequate for rapid evaluation of microbial protein synthesis for a large number of animals and different diets. The results indicate that the advantages of the NIRS technology can be extended into animal physiological studies. The fast and low cost NIRS analyses could be used with no significant loss of accuracy when microbial protein synthesis in the lumen and the microbial protein flow in the duodenum are to be assessed by NIRS.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1121-1121
/
2001
A previous study (Berzaghi et al., 2001) evaluated the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural networks (ANN) on the prediction of the chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with reference values for moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected using 10 different Foss NIR Systems instruments, only some of which had been standardized to one master instrument. The aim of the present study was to evaluate the behaviour of these different calibration methods when predicting the same samples measured on different instruments. Twenty-two sealed samples of different kind of forages were measured in duplicate on seven instruments (one master and six slaves). Three sets of near infrared spectra (1100 to 2500nm) were created. The first set consisted of the spectra in their original form (unstandardized); the second set was created using a single sample standardization (Clone1); the third was created using a multiple sample procedure (Clone6). WinISI software (Infrasoft International Inc., Port Mathilda, PA, USA) was used to perform both types of standardization, Clone1 is just a photometric offset between a “master” instrument and the “slave” instrument. Clone6 modifies both the X-axis through a wavelength adjustment and the Y-axis through a simple regression wavelength by wavelength. The Clone1 procedure used one sample spectrally close to the centre of the population. The six samples used in Clone 6 were selected to cover the range of spectral variation in the sample set. The remaining fifteen samples were used to evaluate the performances of the different models. The predicted values for dry matter, protein and neutral detergent fibre from the master Instrument were considered as “reference Y values” when computing the statistics RMSEP, SEPC, R, Bias, Slope, mean GH (global Mahalanobis distance) and mean NH (neighbourhood Mahalanobis distance) for the 6 slave instruments. From the results we conclude that i) all the calibration techniques gave satisfactory results after standardization. Without standardization the predicted data from the slaves would have required slope and bias correction to produce acceptable statistics. ii) Standardization reduced the errors for all calibration methods and parameters tested, reducing not only systematic biases but also random errors. iii) Standardization removed slope effects that were significantly different from 1.0 in most of the cases. iv) Clone1 and Clone6 gave similar results except for NDF where Clone6 gave better RMSEP values than Clone1. v) GH and NH were reduced by half even with very large data sets including unstandardized spectra.
3D-QSAR between fungicidal activitives ($pI_{50}$) against metalaxyl-sensitive (SPC: 95CC7105) or metalaxyl-resisitant (RPC: 95CC7303) isolate of phytophthora blight fungus (Phytophthora capsici), and a set of 3-phenylisoxazole (A) and 3-phenyl-2,5-dihydroisoxazole (B) derivatives as substrates were conducted using comparative molecular field analyses (CoMFA). The antifungal activities of (A) were generally higher than those of (B). And it is assumed that the most stable conformation of the active substrate was approximately planar from conformational search. The CoMFA models proved a good predictive ability and suggested that the electronic field of substrates were higher than hydropohobic field and steric field requirements for recognition forces of the receptor site. And the factors were strongly correlated (cross-validated $q^2>0.570$ & conventional $r^2>0.968$) with the fungicidal activitives. According to the CoMFA analyses, the selectivity factors for RPC suggested that the sterically bulky groups (C14 & C15) and electron withdrawing groups (C15 & C16) have to be introduced to the ortho, meta and para-position on the benzoyl moiety of substrates.
Journal of The Korean Society of Grassland and Forage Science
/
v.39
no.4
/
pp.292-297
/
2019
In this study, whole crop rice samples were used to develop near-infrared reflectance (NIR) equations to estimate six forage quality parameters: Moisture, crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), Ash and relative feed value (RFV). A population of 564 whole crop rice representing a wide range in chemical parameters was used in this study. Undried finely chopped whole crop rice samples were scanned at 1 nm intervals over the wavelength range 680-2500 nm and the optical data recorded as log 1/Reflectance (log 1/R). NIRS calibrations were developed by means of partial least-squares (PLS) regression. The correlation coefficients of cross-validation (R2cv) and standard error of cross-validation (SECV) for whole crop rice calibration were 0.98 (SECV 1.81%) for moisture, 0.89 (SECV 0.50%) for CP, 0.86 (SECV 1.79%) for NDF, 0.89 (SECV 0.86%) for ash, and 0.84 (SECV 5.21%) for RFV on a dry matter (%), respectively. The NIRS calibration equations developed in this study will be useful in predicting whole crop rice quality for these six quality parameters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.