• 제목/요약/키워드: PLS(partial least squares)

검색결과 384건 처리시간 0.026초

Modified partial least squares method implementing mixed-effect model

  • Kyunga Kim;Shin-Jae Lee;Soo-Heang Eo;HyungJun Cho;Jae Won Lee
    • Communications for Statistical Applications and Methods
    • /
    • 제30권1호
    • /
    • pp.65-73
    • /
    • 2023
  • Contemporary biomedical data often involve an ill-posed problem owing to small sample size and large number of multi-collinear variables. Partial least squares (PLS) method could be a plausible alternative to an ill-conditioned ordinary least squares. However, in the case of a PLS model that includes a random-effect, how to deal with a random-effect or mixed effects remains a widely open question worth further investigation. In the present study, we propose a modified multivariate PLS method implementing mixed-effect model (PLSM). The advantage of PLSM is its versatility in handling serial longitudinal data or its ability for taking a randomeffect into account. We conduct simulations to investigate statistical properties of PLSM, and showcase its real clinical application to predict treatment outcome of esthetic surgical procedures of human faces. The proposed PLSM seemed to be particularly beneficial 1) when random-effect is conspicuous; 2) the number of predictors is relatively large compared to the sample size; 3) the multicollinearity is weak or moderate; and/or 4) the random error is considerable.

데이터 추출 과정을 적용한 Block-wise Adaptive Predictive PLS (Block-wise Adaptive Predictive PLS using Block-wise Data Extraction)

  • 김성영;정창복;최수형;이범석
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.706-712
    • /
    • 2006
  • Recursive Partial Least Squares(RPLS) method has been used for processing the on-line available multivariate chemical process data and modeling adaptive prediction model for process changes. However, RPLS method is unstable in PLS model updating because RPLS method updates PLS model by merging past PLS model and new data. In this study, Adaptive Predictive Partial Least Squres(APPLS) method is suggested for more sensitive adaptation to process changes. By expanding APPLS method, block-wise Adaptive Predictive Partial Least Squares(block-wise APPLS) method is suggested for a lager scale data of chemical processes. APPLS method has been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PTT), and block-wise APPLS method has been applied to predict the cetane number using NIR Diesel Spectra data. APPLS and block-wise APPLS methods show better prediction and updating performance than RPLS method.

Partial Least Squares-discriminant Analysis for the Prediction of Hemodynamic Changes Using Near Infrared Spectroscopy

  • Seo, Youngwook;Lee, Seungduk;Koh, Dalkwon;Kim, Beop-Min
    • Journal of the Optical Society of Korea
    • /
    • 제16권1호
    • /
    • pp.57-62
    • /
    • 2012
  • Using continuous wave near-infrared spectroscopy, we measured time-resolved concentration changes of oxy-hemoglobin and deoxy-hemoglobin from the primary motor cortex following finger tapping tasks. These data were processed using partial least squares-discriminant analysis (PLS-DA) to develop a prediction model for a brain-computer interface. The tasks were composed of a series of finger tapping for 15 sec and relaxation for 45 sec. The location of the motor cortex was confirmed by the anti-phasic behavior of the oxy- and deoxy-hemoglobin changes. The results were compared with those obtained using the hidden Markov model (HMM) which has been known to produce the best prediction model. Our data imply that PLS-DA makes better judgments in determining the onset of the events than HMM.

Pathway and Network Analysis in Glioma with the Partial Least Squares Method

  • Gu, Wen-Tao;Gu, Shi-Xin;Shou, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3145-3149
    • /
    • 2014
  • Gene expression profiling facilitates the understanding of biological characteristics of gliomas. Previous studies mainly used regression/variance analysis without considering various background biological and environmental factors. The aim of this study was to investigate gene expression differences between grade III and IV gliomas through partial least squares (PLS) based analysis. The expression data set was from the Gene Expression Omnibus database. PLS based analysis was performed with the R statistical software. A total of 1,378 differentially expressed genes were identified. Survival analysis identified four pathways, including Prion diseases, colorectal cancer, CAMs, and PI3K-Akt signaling, which may be related with the prognosis of the patients. Network analysis identified two hub genes, ELAVL1 and FN1, which have been reported to be related with glioma previously. Our results provide new understanding of glioma pathogenesis and prognosis with the hope to offer theoretical support for future therapeutic studies.

Shrinkage Structure of Ridge Partial Least Squares Regression

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.327-344
    • /
    • 2007
  • 다중공선성의 데이터에 사용되는 대표적인 편향회귀방법은 능형회귀(RR), 주성분회귀(PCR), 부분최소제곱회귀(PLS) 등이다. 이 회귀방법들은 계수베거 추정량의 놈(norm)이 모두 보통 최소제곱회귀(OLS)의 추정량의 놈보다 작아진다는 의미에서 축소회귀라 부른다. 새로운 회귀방법으로 RR과 PCR을 결합한 능형주성분회귀(RPCR)가 있고 RR과 PLS를 결합한 능형부분최소제곱회귀(RPLS)가 있으며 이들도 또한 축소회귀이다. 이들 추정량은 X'X의 고유벡터들의 선형결합으로 나타낼 수 있고 따라서 각 고유방향에서 OLS에 비해 얼마나 축소되는지를 연구할 수 있다. 본 논문에서는 먼저 이들 추정량을 일반적인 축소인자의 식으로 나타내고 이를 이용하여 MSE의 일반식을 구하였으며 PLS 추정량의 MSE 식도 구하였다. 그리고 RPLS의 축소인자 식을 두 가지 다른 형태로 유도하였다. RPLS의 경우도 이 축소인자 식을 MSE의 일반식에 대입하면 MSE 식이 바로 얻어진다. 그러나 PLS나 RPLS의 축소인자는 y의 복잡한 비선형이 되어 결정적이 아니므로 이들 추정량의 MSE는 근사적인 식이라 할 수 있다. 따라서 PLS나 RPLS를 평가하기 위해 이 MSE를 사용하는 것은 제한적이며, 경험적인 방법으로 이들 회귀의 수행성을 평가하는 것이 필요하다. 다중공선성의 대표적인 데이터인 근적외선 분광 데이터를 이용하여 이 유도된 회귀의 축소인자 값이 인자수에 따라 어떻게 변화하는지와 전체적인 축소 비율도 살펴보았다. 이들의 축소 형태를 잘 이해하면 회귀방법들의 예측력과 안정성을 파악하는데 많은 도움이 되리라 판단된다.

  • PDF

Face recognition by PLS

  • Baek, Jang-Sun
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.69-72
    • /
    • 2003
  • The paper considers partial least squares (PLS) as a new dimension reduction technique for the feature vector to overcome the small sample size problem in face recognition. Principal component analysis (PCA), a conventional dimension reduction method, selects the components with maximum variability, irrespective of the class information. So PCA does not necessarily extract features that are important for the discrimination of classes. PLS, on the other hand, constructs the components so that the correlation between the class variable and themselves is maximized. Therefore PLS components are more predictive than PCA components in classification. The experimental results on Manchester and ORL databases show that PLS is to be preferred over PCA when classification is the goal and dimension reduction is needed.

  • PDF

부분 최소 자승법과 잔차 보상기를 이용한 비선형 데이터 분류 (Non-linear Data Classification Using Partial Least Square and Residual Compensator)

  • 김경훈;김태영;최원호
    • 제어로봇시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.185-191
    • /
    • 2004
  • Partial least squares(PLS) is one of multiplicate statistical process methods and has been developed in various algorithms with the characteristics of principal component analysis, dimensionality reduction, and analysis of the relationship between input variables and output variables. But it has been limited somewhat by their dependency on linear mathematics. The algorithm is proposed to classify for the non-linear data using PLS and the residual compensator(RC) based on radial basis function network (RBFN). It compensates for the error of the non-linear data using the RC based on RBFN. The experimental result is given to verify its efficiency compared with those of previous works.

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.109-115
    • /
    • 2020
  • 본 논문에서는 부분 최소 제곱(PLS) 회귀 모형을 이용한 인공지능(AI) 기술 분석을 제안한다. AI 기술은 이제 우리 사회의 대부분의 영역에 영향을 미치고 있다. 따라서 이 기술에 대한 정확한 이해가 필요하게 된다. AI 기술을 분석하기 위하여 전 세계 특허 데이터베이스로부터 AI 관련 특허 문서를 수집하고 텍스트 마이닝 기법을 사용하여 수집된 특허 문서에서 AI 기술 키워드를 추출한다. 본 연구에서는 추출된 AI 키워드 데이터를 PLS 회귀 모형으로 분석한다. 바이오정보학, 사회과학 및 공학 등 다양한 분야에서 고급 데이터 분석을 위하여 사용되는 PLS 회귀 모형은 부분 최소 제곱 기법을 기반으로 한다. 제안 방법의 성능을 확인하기 위하여 AI 특허 문서를 사용하여 분석 실험을 수행하고 제안하는 연구가 실제 문제에 어떻게 적용될 수 있는지 보여 준다. 본 논문은 AI 기술뿐만 아니라 다른 기술 분야에도 적용 할 수 있다.

A Hybrid Fault Diagnosis Method based on SDG and PLS;Tennessee Eastman Challenge Process

  • Lee, Gi-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.110-115
    • /
    • 2004
  • The hybrid fault diagnosis method based on a combination of the signed digraph (SDG) and the partial least-squares (PLS) has the advantage of improving the diagnosis resolution, accuracy and reliability, compared to those of previous qualitative methods, and of enhancing the ability to diagnose multiple fault. In this study, the method is applied for the multiple fault diagnosis of the Tennessee Eastman challenge process, which is a realistic industrial process for evaluating process contol and monitoring methods. The process is decomposed using the local qualitative relationships of each measured variable. Dynamic PLS (DPLS) model is built to estimate each measured variable, which is then compared with the estimated value in order to diagnose the fault. Through case studies of 15 single faults and 44 double faults, the proposed method demonstrated a good diagnosis capability compared with previous statistical methods.

  • PDF

부분최소자승법과 주성분분석을 이용한 유전자 선택과 분류 (Gene Selection and Classification by Partial Least Squares and Principal component analysis)

  • Park, Hoseok;Kim, Hey-Jin;Park, Seugj in;Bang, Sung-Yang
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (1)
    • /
    • pp.598-600
    • /
    • 2001
  • DNA chip technology enables us to monitor thousands of gene expressions per sample simultaneously. Typically, DNA microarray data has at least several thousands of variables (genes) wish relatively smal1 number of samples. Thus feature (gene) selection by dimensionality reduction is necessary for efficient data analysis. In this paper we employ the partial least squares (PLS) method for gene selection and the principal component analysis (PCA) method for classification. The useful behavior of the PLS is verified by computer simulations.

  • PDF