• Title/Summary/Keyword: PLIF

Search Result 127, Processing Time 0.027 seconds

A Study of NO Formation Characteristics in Laminar Flames Using 2-D LIF Technique (2-D LIF를 이용한 층류화염의 NO 생성특성에 관한 연구)

  • Lee, Won-Nam;Cha, Min-Suk;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.38-48
    • /
    • 2003
  • OH, CH and NO radical distributions have been measured and compared with the numerical analysis results in methane/air partially premixed laminar flames using 2-D LIF technique. The pick intensity of OH LIF signal is insensitive to fuel equivalence ratio: however, CH LIF intensity decreases as equivalence ratio increases and the NO concentration increases with equivalence ratio. The contribution of the prompt NO, formed near premixed reaction zone, to the total NO formation is evident from the OH, CH, and NO PLIF images in which the dilution effect of nitrogen is minimal for the highest equivalence ratio. Measured OH and NO LIF signals in counterflow flames agree with the computed concentration distributions. Both numerical and experimental results indicate that the structural change in a flame alters the NO formation characteristics of a partially premixed counterflow flame. The nitrogen dilution also changes flame structure, temperature and OH radical distributions and results in the decreased NO concentrations in a flame. The levels of decrease in NO concentrations, however, depends on the premixedness(${\alpha}$) of a flame. The larger change in the flame structure and NO concentrations have been observed in a premixed flame(${\alpha}=1.0$), which implies that the premixedness is likely to be a factor in the dilution effect on NO formation of a flame.

  • PDF

An Experimental Study on the Combustion Instability Evaluation by Using DMD (DMD 기법을 적용한 모형 가스터빈의 연소불안정성 평가에 관한 실험적 연구)

  • Son, Jinwoo;Sohn, Chae Hoon;Yoon, Jisu;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.59-60
    • /
    • 2017
  • Combustion instability of gas turbine is performed by adopting dynamic mode decomposition (DMD). The unstable frequencies are calculated and compared with FFT results. The damping coefficient derived from the DMD technique and FFT results were compared and analyzed. OH radical is measured by experimental work and fluctuation field is extracted and FTF was calculated at various points with DMD. The gains of FTF are changed depending on the extraction position of the heat release fluctuation field.

  • PDF

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air

  • Kim, Ji-Ho;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.386-397
    • /
    • 2012
  • The stability and structure of bluff-body stabilized hydrogen flames were investigated numerically and experimentally. The velocity of coflowing air was varied from subsonic velocity to a supersonic velocity of Mach 1.8. OH PLIF images and Schlieren images were used for analysis. Flame regimes were used to classify the characteristic flame modes according to the variation of the fuel-air velocity ratio, into jet-like flame, central-jet-dominated flame, and recirculation zone flame. Stability curves were drawn to find the blowout regimes and to show the improvement in flame stability with increasing lip thickness of the fuel tube, which acts as a bluff-body. These curves collapse to a single line when the blowout curves are normalized by the size of the bluff-body. The variation of flame length with the increase in air flow rate was also investigated. In the subsonic coflow condition, the flame length decreased significantly, but in the supersonic coflow condition, the flame length increased slowly and finally reached a near-constant value. This phenomenon is attributed to the air-entrainment of subsonic flow and the compressibility effect of supersonic flow. The closed-tip recirculation zone flames in supersonic coflow had a reacting core in the partially premixed zone, where the fuel jet lost its momentum due to the high-pressure zone and followed the recirculation zone; this behavior resulted in the long characteristic time for the fuel-air mixing.

Wedge Shape Cage in Posterior Lumbar Interbody Fusion : Focusing on Changes of Lordotic Curve

  • Kim, Joon-Seok;Oh, Seong-Hoon;Kim, Sung-Bum;Yi, Hyeong-Joong;Ko, Yong;Kim, Young-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.4
    • /
    • pp.255-258
    • /
    • 2005
  • Objective : Lumbar lordotic curve on L4 to S1 level is important in maintaining spinal sagittal alignment. Although there has been no definite report in lordotic value, loss of lumbar lordotic curve may lead to pathologic change especially in degenerative lumbar disease. This study examines the changes of lumbar lordotic curve after posterior lumbar interbody fusion with wedge shape cage. Methods : We studied 45patients who had undergone posterior lumbar interbody fusion with wedge shape cage and screw fixation due to degenerative lumbar disease. Preoperative and postoperative lateral radiographs were taken and one independent observer measured the change of lordotic curve and height of intervertebral space where cages were placed. Segmental lordotic curve angle was measured by Cobb method. Height of intervertebral space was measured by averaging the sum of anterior, posterior, and midpoint interbody distance. Clinical outcome was assessed on Prolo scale at 1month of postoperative period. Results : Nineteen paired wedge shape cages were placed on L4-5 level and 6 paired same cages were inserted on L5-S1 level. Among them, 18patients showed increased segmental lordotic curve angle. Mean increased segmental lordotic curve angle after placing the wedge shape cages was $1.96^{\circ}$. Mean increased disc height was 3.21mm. No cases showed retropulsion of cage. The clinical success rate on Prolo's scale was 92.0%. Conclusion : Posterior lumbar interbody fusion with wedge shape cage provides increased lordotic curve, increased height of intervertebral space, and satisfactory clinical outcome in a short-term period.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • O, Seung-Muk;Kim, Chang-Eop;Lee, Jin-Uk;Kim, Chang-Gi;Gang, Geon-Yong;Bae, Chung-Sik
    • 연구논문집
    • /
    • s.33
    • /
    • pp.5-16
    • /
    • 2003
  • Fuel distribution, combustion, and flame propagation characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine. Optically accessible single cylinder engine and laser diagnostics system were built for quantifying fuel concentration by acetone PLIF(planar laser induced fluorescence) measurements. In case of Otto cycle engine with large bore size, the engine knock and thermal stress of exhaust manifold are so critical that lean burn operation is needed to reduce the problems. It is generally known that fuel stratification is one of the key technologies to extend the lean misfire limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs2.3. Thus, strong swirl flow could promote desirable axial fuel stratification and, in result, may make flame propagation stable in the early stage of combustion.

  • PDF

Spray Visualization Using Laser Diagnostics (레이저를 이용한 분무 가시화)

  • 윤영빈
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.87-112
    • /
    • 2005
  • 분무를 정량적으로 측정하는 것은 노즐의 설계와 개발을 위해서 뿐만 아니라 연소 시스템 전반의 효율 및 불안정성의 제거, 공해 저감 등의 요구 조건을 만족하기 위해서 중요하다. 이를 위해 이전에는 분무장 내에 수집관을 삽입하는 기계적 패터네이터(Mechanical Patternator)와 같은 삽입식 측정 방식을 이용하여 왔으나, 최근에는 고속카메라, Malvern particle analyzer, PDPA, 광학 패터네이터(Optical Patternator)와 같은 분무장을 교란시키지 않으면서도 빠른 측정이 가능한 가시화 기술들이 적용되고 있다. 특히 광학 패터네이터는 레이저 평면광을 이용하여 분무를 측정하는 비삽입식 기술로 단시간 내에 분무장 내 액체 연료의 질량 및 액적 크기의 단면 분포를 동시에 얻어낼 수 있는 장점을 갖고 있다. 그러나 분무 액적들의 수밀도가 증가하는 경우에는 이들 액적에 의한 입사광 및 신호 감쇠, 다중산란 등에 의한 오차가 심하게 발생하여, 기존의 PDPA, PLIF 등의 광학 기법으로는 충분히 신뢰할 만한 결과를 얻기가 어렵게 된다. 이러한 분무를 정량적으로 측정하기 위해서는 입사광의 감쇠뿐만 아니라 분무장 내 액적들에 의한 신호의 감쇠 과정에 대한 고려가 필요하다. 주면 액적들의 영향을 최소한으로 줄이기 위해서는 레이저 평면광을 사용하는 광학 패터네이터와 달리 레이저 광선을 분무장에 조사하여 고압에서 나타날 수 있는 다중 산란에 의한 오차를 최소화할 수 있다. 이러한 이미지 처리 기법을 이용하는 광학 선형 패터네이터(Optical Line Patternator)를 이용하여 기존 레이저 계측기법으로 측정이 곤란하였던 고압 환경 하에서의 스월 동축형 인젝터의 분무 특성을 해석할 수가 있다. 2015(년도) 6,388, 2025(년도) 13,367, 2035(년도) 18,756, 2045(년도) 22,595, 시장점유율 증가로 인한 수출액 증가분 누적(억원) : 2015(년도) 3,411, 2025(년도) 8,847, 2035(년도) 14,433, 2045(년도) 18,005 또한 시나리오 비교평가를 실시하여 본 결과, 본 연구에서 정의한 순편익 누적(Cumulative Net Profit) 변수를 적용하면 현재 연구비 추세 대비 $30\%$ 까지 연구비를 증가 시키는 것이 효율적임을 알 수 있었다.성, 생산 용이성, 제품 디자인의 우수한 정도가 a=0.01 수준 하에서 유의적으로 추정되었다. 이들 변수들 중에서 품질경쟁력에 가장 큰 영향을 미치는 측정변수는 제품의 기본 성능, 수명(내구성), 신뢰성, 제품 디자인의 순서로 추정되었다. 이것은 한국 제조업이 아직 산업 디자인이 품질경쟁력에 크게 영향을 미치는 성숙단계에 이르지 못하였음을 의미한다. (2) 제품 디자인에게 영향을 끼치는 유의적인 변수는 연구개발력, 연구개발투자 수준, 혁신활동 수준(5S, TPM, 6Sigma 운동, QC 등)이며, 제품 디자인은 우선 품질경쟁력을 높여 간접적으로 고객만족과 고객 충성을 유발하는 것으로 추정되었다. 상기의 분석결과로부터, 본 연구는 다음과 같은 정책적 함의를 도출하였다. 첫째, 신상품 개발과 혁신을 위한 포괄적인 연구개발 프로젝트를 품질 경쟁력의 주요 결정요인(제품의 기본성능, 신뢰성, 수명(내구성) 및 제품 디자인)과 연계하여 추진해야 할 것이다. 둘째, 기업은 디자인 경영 마인드 제고와 디자인 전문인력 양성을, 대학은 디자인 현장 업무를 통하여 창의력 증진과 기획 및 마케팅 능력 교육을, 정부는 디자

  • PDF

Paraspinal Muscle Sparing versus Percutaneous Screw Fixation: A Prospective and Comparative Study for the Treatment of L5-S1 Spondylolisthesis

  • Jang, Kun-Soo;Kim, Heyun-Sung;Ju, Chang-Il;Kim, Seok-Won;Lee, Sung-Myung;Shin, Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.3
    • /
    • pp.163-166
    • /
    • 2011
  • Objective : Both the paraspinal muscle sparing approach and percutaneous screw fixation are less traumatic procedures in comparison with the conventional midline approach. These techniques have been used with the goal of reducing muscle injury. The purpose of this study was to evaluate and to compare the safety and efficacy of the paraspinal muscle sparing technique and percutaneous screw fixation for the treatment of L5-S1 spondylolisthesis. Methods : Twenty patients who had undergone posterior lumbar interbody fusion (PLIF) at the L5-S1 segment for spondylolisthesis were prospectively studied. They were divided into two groups by screw fixation technique (Group I : paraspinal muscle sparing approach and Group II: percutaneous screw fixation). Clinical outcomes were assessed by Low Back Outcome Score (LBOS) and Visual Analogue Scale (VAS) for back and leg pain at different times after surgery. In addition, modified MacNab's grading criteria were used to assess subjective patients' outcomes 6 months after surgery. Postoperative midline surgical scarring, intraoperative blood loss, mean operation time, and procedure-related complications were analyzed. Results : Excellent or good results were observed in all patients in both groups 6 months after surgery. Patients in both groups showed marked improvement in terms of LBOSs all over time intervals. Postoperative midline surgical scarring and intraoperative blood loss were lower in Group II compared to Group I although these differences were not statistically significant. Low back pain (LBP) and leg pain in both groups also showed significant improvement when compared to preoperative scores. However, at 7 days and 1 month after surgery, patients in Group II had significantly better LBP scores compared to Group I. Conclusion : In terms of LBP during the early postoperative period, patients who underwent percutaneous screw fixation showed better results compared to ones who underwent screw fixation via the paraspinal muscle sparing approach. Our results indicate that the percutaneous screw fixation procedure is the preferable minimally invasive technique for reducing LBP associated with L5-S1 spondylolisthesis.