• Title/Summary/Keyword: PLASMA SURFACE TREATMENT

Search Result 990, Processing Time 0.023 seconds

Improved Adhesion of Solar Cell Cover Glass with Surface-Flourinated Coating Using Atmospheric Pressure Plasma Treatment (상압 플라즈마 표면처리를 통한 태양광모듈 커버글라스와 불소계 코팅의 응착력 향상)

  • Kim, Taehyeon;Park, Woosang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.244-248
    • /
    • 2018
  • We propose a method for improving the reliability of a solar cell by applying a fluorinated surface coating to protect the cell from the outdoor environment using an atmospheric pressure plasma (APP) treatment. An APP source is operated by radio frequency (RF) power, Ar gas, and $O_2gas$. APP treatment can remove organic contaminants from the surface and improve other surface properties such as the surface free energy. We determined the optimal APP parameters to maximize the surface free energy by using the dyne pen test. Then we used the scratch test in order to confirm the correlation between the APP parameters and the surface properties by measuring the surface free energy and adhesive characteristics of the coating. Consequently, an increase in the surface free energy of the cover glass caused an improvement in the adhesion between the coating layer and the cover glass. After treatment, adhesion between the coating and cover glass was improved by 35%.

Plasma Surface Treatment of Aluminum Extrusion Die (알루미늄 압출용 금형의 플라즈마 표면처리)

  • Choi, In Kyu;Lee, Su Young;Kim, Sang Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.282-286
    • /
    • 2014
  • Wear characteristic of the nitrided SKD61 which is a typical mold material using for the extrusion of Al6061 alloy was investigated. The surface of SKD61 was nitrided by salt bath and plasma processes. The thickness of surface nitride layer was about $8.9{\mu}m{\sim}21.3{\mu}m$. Reciprocating friction wear test conducted using pin on disk type indicated the plasma treatment followed salt bath has a lower friction coefficient and a smaller adhesive wear with Al6061 alloy. That was identified by the $Fe_4N$ which has a better wear resistance than FeN mainly formed by plasma nitriding.

Characteristics of Hardness and Wear-Resistance of Plasma-Nitrided and Nitrocarburized Carbon Steels (플라즈마질화 및 침질탄화처리한 탄소강의 경도와 내마모특성)

  • Kim, M.K.;Jung, B.H.;Park, H.S.;Lee, B.C.;Shin, S.H.;Lee, J.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.166-173
    • /
    • 1999
  • Commercial carbon steels containing 0.2~0.55 wt.----C were plasma-nitrided or plasma nitrocarburized at $550^{\circ}C$ for 21.6Ks using $H_2-N_2$ or $H_2-N_2$-CO mixed gas respectively. The characteristics of hardening and wear-resistance of each treatment were studied and compared. And also microstructure of nitrided layer and nitrides formed in compound layer near surface were studied. All plasma-nitrided steels investigated showed remarkable increase of surface hardness with the increase of carbon content. But nitrocarburized steels resulted in higher surface-hardness than plasma-nitrided steels, which means that nitrocarburized has higher surface-hardening effect. Plasma-nitrided steels showed hardness increase in through-thickness direction near surface. And also nitrocarburized steels showed similar hardness distribution in through-thickness direction to that of plasma-nitrided steel. However, nitrocarburized steels had higher cross-sectional maximum-hardness than plasma-nitrided steels as much as 100Hv. Wear test showed that the amount of specific wear was reduced by both plasma-nitriding and nitrocarburized, showing that the amount of specific wear was not related to the hardness. But non-treated specimen showed that the amount of specific wear was related to the hardness.

  • PDF

Plasma treatments of indium tin oxide(ITO) anodes in argon/oxygen to improve the performance and morphological property of organic light-emitting diodes(OLED) ($O_2$ : Ar 혼합가스 플라즈마로 ITO표면 처리한 OLED의 동작특성 향상과 표면개질에 관한 연구)

  • Seo, Yu-Suk;Moon, Dae-Gyu;Jo, Nam-Ihn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.67-68
    • /
    • 2008
  • A simple bi-layer structure of organic light emitting diode (OLED) was used to study the characteristics of anode preparation. Indium tin oxide (ITO) anode surface treatment of OLEDs was performed to get the optimum condition for the ITO anode. The ITO surface was treated by $O_2$ or $O_2$ / Ar mixed gas plasma with different processing time. The electrical characteristics of OLED were improved by plasma treatment. The operating voltage of OLED with $O_2$ or $O_2$/Ar mixed gas plasma treated anodes decreases from 8.2 to 3.4 V and 3.2V, respectively. The $O_2$ /Ar mixed gas plasma treatment results in better electrical property.

  • PDF

A study of the fluorine treatment for the anti-corrosion after plasma etching of AlCu films (AlCu 배선의 부식방지를 위한 fluorine 가스 처리연구)

  • 김창일;서용진;권광호;김태형;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.383-386
    • /
    • 1998
  • After etching Al-Cu alloy films using SiC1$_4$/Cl$_2$/He/CHF$_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, CHF$_3$ plasma treatment subsequent to the etched has been carried out. A passivation layer is formed by fluorine-related compounds on the etched Al-Cu surface after CHF$_3$ and SF$_{6}$ treatment, and the layer supresses effectively the corrosion on the surface as the CHF$_3$ and SF$_{6}$ treatment pressure increases. The corrosion could be suppressed successfully with CHF$_3$ and SF6 treatment in the pressure of 300mTorr.orr.

  • PDF

Effects of Low Temperature Plasma Nitriding Treatment on Corrosion behavior of Stainless Steel (스테인리스강의 내식성에 미치는 저온 플라즈마 질화의 영향)

  • Kim, H.G.;Bin, J.U.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2011
  • Plasma nitriding of stainless steels has been investigated over a range of temperature from 400 to $500^{\circ}C$ and time from 10 to 20 hours. Characterization of systematic materials was carried out in terms of mechanical properties and corrosion behaviors. The results showed that plasma nitriding conducted at low temperatures not only increased the surface hardness, but also improved the corrosion resistance of STS 316L, STS409L, and STS 420J2. It was found that plasma-nitriding treatment at $500^{\circ}C$ resulted in increasing the corrosion performance of STS 409L and STS 420J2, while STS 316L was observed with server and massive damage on surface due to the formation of CrN.

The Physicochemical Characteristics of PET Fabrics Treated with Low Temperature Glow Plasma and Atmospheric Corona Discharge (진공 저온 플라즈마와 대기압 코로나 방전가공 PET 직물의 물리화학적 특성)

  • Ma, Jaehyuk;Yang, Jinyoung;Koo, Kang;Yang, Hyun A;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • The high value-added functionality for synthetic fiber can be considered through a plasma enhanced treatment. In this study, PET(Polyethyleneterephthalate) was treated with a glow plasma and corona treatment. Surface characteristics of treated fabric were investigated using electron scanning microscopy(SEM), contact angle, X-ray photoelectron spectroscopy(XPS), tensile and adhesion strength. It was found that the contact angle showed $85.5^{\circ}$ for untreated fabric, $0^{\circ}$ for plasma and corona treatment at the condition of 200W for 7min. By XPS analysis, atomic ratio of O 1s/C 1s was increased from 0.27 to 0.43 by glow plasma and 0.27 to 0.41 by corona treatment at 200W for 7min, respectively. Glow plasma and corona treatment did not significantly change the tensile strength of PET fabric. Adhesion strength showed a substantial enhancement for the surface treated with the glow plasma, while corona treatment was adversely affected.

Influence of Allylamine Plasma Treatment Time on the Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.221-232
    • /
    • 2009
  • The allylamine plasma treatment is used to modify the surface properties of vapor grown carbon fibers (VGCF). It is to improve the interfacial bonding between the VGCF and epoxy matrix. The allylamine plasma process was performed by batch process in a vacuum chamber, using gas injection followed by plasma discharge for the durations of 20, 40 and 60 min. The interdependence of mechanical properties on the VGCF contents, treatment time and interfacial bonding between VGCF/ep was investigated. The interfacial bonding between VGCF and epoxy matrix was observed by scanning electron microscopy (SEM) micrographs of nanocomposites fracture surfaces. The changes in the mechanical properties of VGCF/ep, such as the tensile modulus and strength were discussed. The mechanical properties of allylamine plasma treated (AAPT) VGCF/ep were compared with those of raw VGCF/ep. The tensile strength and modulus of allyamine plasma treated VGCF40 (40 min treatment)/ep demonstrated a higher value than those of other samples. The mechanical properties were increased with the allyamine plasma treatment due to the improved adhesion at VGCF/ep interface. The modification of the carbon nanofibers surface was observed by transmission electron microscopy (TEM). SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Atmospheric Plasma Treatment on Copper for Organic Cleaning in Copper Electroplating Process: Towards Microelectronic Packaging Industry

  • Hong, Sei-Hwan;Choi, Woo-Young;Park, Jae-Hyun;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.71-74
    • /
    • 2009
  • Electroplated Cu is a cost efficient metallization method in microelectronic packaging applications. Typically in 3-D chip staking technology, utilizing through silicon via (TSV), electroplated Cu metallization is inevitable for the throughput as well as reducing the cost of ownership (COO).To achieve a comparable film quality to sputtering or CVD, a pre-cleaning process as well as plating process is crucial. In this research, atmospheric plasma is employed to reduce the usage of chemicals, such as trichloroethylene (TCE) and sodium hydroxide (NaHO), by substituting the chemical assisted organic cleaning process with plasma surface treatment for Cu electroplating. By employing atmospheric plasma treatment, marginally acceptable electroplating and cleaning results are achieved without the use of hazardous chemicals. The experimental results show that the substitution of the chemical process with plasma treatment is plausible from an environmentally friendly aspect. In addition, plasma treatment on immersion Sn/Cu was also performed to find out the solderability of plasma treated Sn/Cu for practical industrial applications.

Surface treatments of environmentally friendly Cr-free organic compounds for corrosion protection of metals (금속의 내식성 향상을 위한 환경 친화형 무크롬 유기화합물의 표면처리)

  • 이원기;박찬영
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.801-807
    • /
    • 2003
  • This work aims the search of environmentally friendly pre-treatment technologies to develop chromate replacements for metal finishing industries due to its toxicological properties. Since the corrosion resistance of steel was strongly related to water permeation, galvanized steel sheets were treated with various hydrophobic silane compounds and water-suspended polymer solution. Also, plasma gas discharge was applied to modify the surface of a polymer coated-steel sheet to be hydrophobic. The surface hydrophobicity of materials was introduced by CF$_3$H plasma exposure. The corrosion property before and after the plasma treatment was investigated in a slat spray tester with 3.5 wt.% NaCl at 35$^{\circ}C$. The results showed that both silane/polymer double coatings and plasma treatment of the galvanized steel exhibited significant retardation of corrosion.