• 제목/요약/키워드: PLASMA SURFACE TREATMENT

검색결과 990건 처리시간 0.023초

CHARACTERIXATION OF PLASMA ION IMPLANTED SURFACES USING TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMATRY

  • Lee, Yeon-Hee;Han, Seung-Hee;Lee, Jung-Hye;Yoon, Jung-Hyeon
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.880-883
    • /
    • 1996
  • Plasma Source Ion Implantation (PSII) technique was used for the hydrophilization or hydrophobization of polymer surfaces. Polymers were modified with different plasma gases such as oxygen, nitrogen, argon, and tetrafluoromethane, and for varying lengths of treatment time. Plasma ion treatment of oxygen, nitrogen, argon and their mixtures increased significantly the hydrophilic properties of polymer surfaces. More hydrophobic surfaces of polymers were formed after the treatment with tetrafluoromethane. A study of plasma source ion implanted polymers was performed using contact angle measurements and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The TOF-SIMS spectra and depth profile were used to obtain the information about the treated surfaces of polymers. The permanence of this technique could be evaluated with respect to ageing time. The surfaces treated with PSII gave better stability than other surface modification methods.

  • PDF

플라즈마 표면처리에 따른 고분자절연재료용 유리섬유의 표면개질 (Surface Modification of Glass Fiber for Polymer Insulator by Plasma Surface Treatment)

  • 임경범;이덕출
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권5호
    • /
    • pp.206-206
    • /
    • 2003
  • It is hard to expect excellent electrical, mechanical and chemical properties from most of the composite materials presently used as insulators due to insufficient wettability property caused by the difference of interfacial properties between the matrix material and the reinforcer. Therefore, various interfacial coupling agents have been developed to improve the interfacial properties of composite materials. But if the wettable coupling agents are used outdoor for a long time, change in quality takes place in the coupling agents themselves, bringing about deterioration of the properties of the composite materials. In this study, glass surface was treated by plasma to examine the effect of dry interface treatment without coupling agent. It was identified that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. Also, the surface resistance rate and dielectric property were improved.

플라즈마 표면처리에 따른 고분자절연재료용 유리섬유의 표면개질 (Surface Modification of Glass Fiber for Polymer Insulator by Plasma Surface Treatment)

  • 임경범;이덕출
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권5호
    • /
    • pp.206-212
    • /
    • 2003
  • It is hard to expect excellent electrical, mechanical and chemical properties from most of the composite materials presently used as insulators due to insufficient wettability property caused by the difference of interfacial properties between the matrix material and the reinforcer. Therefore, various interfacial coupling agents have been developed to improve the interfacial properties of composite materials. But if the wettable coupling agents are used outdoor for a long time, change in quality takes place in the coupling agents themselves, bringing about deterioration of the properties of the composite materials. In this study, glass surface was treated by plasma to examine the effect of dry interface treatment without coupling agent. It was identified that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. Also, the surface resistance rate and dielectric property were improved.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part I

  • Lee, Joonwoo;Kim, Sungsoo
    • 통합자연과학논문집
    • /
    • 제6권4호
    • /
    • pp.211-214
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that HF treatment is not desirable for the synthesis of a high quality PEDOT thin film via vapor phase polymerization method. Rather, sole treatment with plasma noticeably improved the quality of APS-SAM on glass surface. As a result, a highly dense and smooth PEDOT thin film was grown on uniform oxidant film-coated APS monolayer surface.

플라즈마 산질화처리된 AISI 420 마르텐사이트 스테인레스 강재의 표면 경도 및 부식 거동 (Surface Hardness and Corrosion Behavior of AISI 420 Martensitic Stainless Steels Treated by Plasma Oxy-Nitriding Processing)

  • 김진한;이광민
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.309-314
    • /
    • 2023
  • This study aimed to address the limitations of traditional plasma nitriding methods by implementing a short-term plasma oxy-nitriding treatment on the surface of AISI 420 martensitic stainless steel. This treatment involved the sequential formation of nitride and oxide layers, to enhance surface hardness and corrosion resistance, respectively. The process resulted in the formation of a 20 ㎛-thick nitride layer and a 3 ㎛-thick oxide layer on the steel surface. Initially, the hardness increased by 2.2 times after nitriding, followed by a subsequent decrease of approximately 31 % after oxidation. While the nitriding process reduced corrosion resistance, the subsequent oxidation process led to the formation of a passive oxide film, effectively resolving this issue. The pitting corrosion of the oxide passive film started at 82.6 mVssc, providing better corrosion resistance characteristics than the nitride layer. Consequently, the trade-off between surface hardness and corrosion resistance in plasma oxy-nitrided AISI 420 martensitic stainless steel is anticipated to be recognized as an innovative and comprehensive surface treatment process for biomedical components.

유리섬유/에폭시 복합절연재료의 계면 접착력 개선에 관한 연구 1

  • 이종호;황영한;이규철
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권2호
    • /
    • pp.136-143
    • /
    • 1995
  • With the contact angle of phase dropping epoxy resin on the inorganic filler(glass plate) surface treated with air plasma, we have studied about the interfacial wettability between epoxy resin and glass plate as a simple model of glass fiber reinforced composite materials. The contact angle on the inorganic filler surface varied with surface treatment conditions. The contact angle significantly depends on plasma treating time and environment temperature in the oven. From the view point of plasma treatment condition in this work, when discharge conditions were pressure 200mtorr, voltage 800V, magnetic flux density 8OGauss, optimum treatment time were proved as 3,4 and 5 minutes for the environment of >$80^{\circ}C$, >$100^{\circ}C$ and >$120^{\circ}C$, respectively.

  • PDF

습식공정으로 형성된 구리산화물 나노와이어의 전계방출특성 향상 (Enhancement of Field Emission Characteristics of CuO Nanowires Formed by Wet Chemical Process)

  • 성우용;김왈준;이승민;이호영;박경호;이순일;김용협
    • 한국표면공학회지
    • /
    • 제37권6호
    • /
    • pp.313-318
    • /
    • 2004
  • Vertically-aligned and uniformly-distributed CuO nanowires were formed on copper-coated Si substrates by wet chemical process, immersing them in a hot alkaline solution. The effects of hydrogen plasma treatment on the field emission characteristics of CuO nanowires were investigated. It was found that hydrogen plasma treatment enhanced the field emission properties of CuO nanowires by showing a decrease in turn-on voltage, and an increase in emission current density, and stability of current-voltage curves. However, the excessive hydrogen plasma treatment made the I-V curves unstable. It was confirmed by XPS (X-ray Photoelectron Spectroscopy) analysis that hydrogen plasma treatment deoxidized CuO nanowires, thereby the work function of the nanowires decreased from 4.35 eV (CuO) to 4.1 eV (Cu). It is thought that the decrease in the work function enhanced the field emission characteristics. It is well-known that the lower the work function, the better the field emission characteristics. The results suggest that the hydrogen plasma treatment is very effective in achieving enhanced field emission properties of the CuO nanowires, and there may exist an optimal hydrogen plasma treatment condition.

복합레진 인레이의 표면처리방법에 따른 표면특성 비교 (Comparison of surface characterization according to surface treatment of composite resin inlay)

  • 이명진;최유리;강민경
    • 한국치위생학회지
    • /
    • 제19권2호
    • /
    • pp.307-315
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the characterization of composite resin inlay surface with silane and non-thermal atmospheric pressure plasma treatment. Methods: Composite resin inlay was used as a specimen, which was treated by sandblasting + silane and sandblasting + plasma. The untreated specimens were assigned to the control group. Specimens were analyzed for surface roughness, color change, and chemical composition. Statistical analyses were performed using one-way ANOVA test (p<0.05). Results: The present findings showed that the roughness and color changes of the plasma-treated surface were significantly lower than those of the silane-treated surface. In addition, a change in the chemical composition was observed on the plasma-treated surface. Conclusions: Based on the results, non-thermal atmospheric pressure plasma could be a potential tool for the cementation of composite resin inlay.

Unexpected Chemical and Thermal Stability of Surface Oxynitride of Anatase TiO2 Nanocrystals Prepared in the Afterglow of N2 Plasma

  • Jeon, Byungwook;Kim, Ansoon;Kim, Yu Kwon
    • Applied Science and Convergence Technology
    • /
    • 제26권4호
    • /
    • pp.62-65
    • /
    • 2017
  • Passivation of surface defects by the formation of chemically inert structure at the surface of $TiO_2$ nanocrystals can be potentially useful in enhancing their photocatalytic activity. In this regard, we have studied the surface chemical states of $TiO_2$ surfaces prepared by a treatment in the afterglow of $N_2$ microwave plasma using X-ray photoemission spectroscopy (XPS). We find that nitrogen is incorporated into the surface after the treatment up to a few atomic percent. Interestingly, the surface oxynitride layer is found to be chemically stable when it's in contact with water at room temperature (RT). The surface nitrogen species were also found to be thermally stable upon annealing up to $150^{\circ}C$ in the atmospheric pressure. Thus, we conclude that the treatment of oxide materials such as $TiO_2$ in the afterglow of $N_2$ plasma can be effective way to passivate the surface with nitrogen species.

플라즈마를 이용한 고분자물질의 표면처리에 관한 연구 (A Study on Polymer Surface Treatment Using Plasma)

  • 박희련;임종민;설수덕;이내우;문진복
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.94-100
    • /
    • 2005
  • The plasma, ionized gas state, is generally composed as the 4th state in the universe. Generating the plasma artificially has been studied by spending energy and it has been applied so much in human's life. There are several merits to modify the surface of polymer using plasma. Above all, plasma maintains the properties of polymer itself, but changes the properly of polymer surface only. Also, it is the environmentally fraternized because there are no waste processing from organic solvent. Furthermore, it is possible that continuous automated-processing in case of high-pressure plasma. Therefore, we have tried the reforming of surface to rise the adhesive strength between the material of polymer, and have experimented rising the adhesive strength through peel strength by virtue of processing time and using gas, of course, confirmed the change of polymer surface through measuring the contact angle analysis and scanning electron microscopy(SEM).