• Title/Summary/Keyword: PLASMA SURFACE TREATMENT

Search Result 989, Processing Time 0.027 seconds

The Effects of Fluorine Passivation on $SF_6$ Treatment for Anti-corrosion after Al(Cu 1%) Plasma Etching (Al(Cu 1%)막의 플라즈마 식각후 부식 억제를 위한 $SF_6$ 처리시 fluorine passivation 효과)

  • 김창일;권광호;백규하;윤용선;김상기;남기수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.203-207
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, the $SF_6$ plasma treatment subsequent to the etch has been carried out. A passivation layer is formed by fluorine-related compounds on etched Al-Cu alloy surface after $SF_6$ treatment, and the layer suppresses effectively the corrosion on the surface as the RF power of $SF_6$ treatment increases. The corrosion could be suppressed successfully with $SF_6$ treatment in the RF power of 150watts.

  • PDF

Corrosion at the Grain Boundary and a Fluorine-Related Passivation Layer on Etched Al-Cu (1%) Alloy Surfaces

  • Baek, Kyu-Ha;Yoon, Yong-Sun;Park, Jong-Moon;Kwon, Kwang-Ho;Kim, Chang-Il;Nam, Kee-Soo
    • ETRI Journal
    • /
    • v.21 no.3
    • /
    • pp.16-21
    • /
    • 1999
  • After etching Al-Cu alloy films using SiCl4/Cl_2/He/CHF3 mixed gas plasma, the corrosion phenomenon at the grain boundary of the etched surface and a passivation layer on the etched surface with an SF6 plasma treatment subsequent to the etching were studied. In Al-Cu alloy system, corrosion occurs rapidly on the etched surface by residual chlorine atoms, and it occurs dominantly at the grain boundaries rather than the crystalline surfaces. To prevent corrosion, the SF6 gas plasma treatment subsequent to etching was carried out. The passivation layer is composed of fluorine-related compounds on the etched Al-Cu surface after the SF6 treatment, and it suppresses effectively corrosion on the surface as the SF6 treatment pressure increases. Corrosion could be suppressed successfully with the SF6 treatment at a total pressure of 300 mTorr. To investigate the reason why corrosion could be suppressed with the SF6 treatment, behaviors of chlorine and fluorine were studied by various analysis techniques. It was also found that the residual chlorine incorporated at the grain boundary of the etched surface accelerated corrosion and could not be removed after the SF6 plasma treatment.

  • PDF

Properties of Silicone-coated Fabric for Membrane Treated by Oxygen Low Temperature Plasma (산소 저온 플라즈마 처리에 의한 실리콘코팅 막 구조원단의 접착특성)

  • Park, Beob;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.195-200
    • /
    • 2011
  • Silicone-coated fabric were treated by oxygen low temperature plasma to improve the adhesion. The surface of silicone-coated fabric was modified with gaseous plasma of several discharge power in the presence of oxygen gas at 1Torr pressure. Oxygen plasma treatment introduces oxygen-containing functional groups and micro-pittings on the silicone-coated fabric surface. The treated fabrics with oxygen low temperature plasma were measured by contact angle analyzer and XPS(X-ray photoelectron spectroscopy), and interfacial adhesion was measured by T-peel test. The surface of fabric was investigated by SEM photographs. The chemical and physical modification of the surface wettabillity by plasma treatment can increase the adhesion.

Effects of Low Pressure and Atmospheric Pressure Plasma Treatment on Contact Angle of Polycarbonate Surface (저압 및 대기압 플라즈마 처리를 통한 폴리카보네이트의 접촉각 변화특성 비교)

  • Won, Dong Su;Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • The effect of plasma treatment on surface characteristics of polycarbonate (PC) films was investigated using low pressure plasma and atmospheric pressure plasma with oxygen and argon. Untreated PC has a contact angle of $82.31^{\circ}$ with de-ionized water which reduced to $9.17^{\circ}$ as the lowest value after being treated with a low pressure plasma treatment with oxygen. Increase of delivered powers such as RF and AC with a high frequency and gas flow rates was not effective to reduce contact angles dramatically but gave the trend of reducing gradually. The surface of PC treated with plasma shows a low contact angle but the contact angle increases rapidly according to the exposure time in air ambient. Oxygen plasma was more effective to generate the polar functional group regardless of the type of plasma. Conclusively, a low plasma treatment with oxygen is more recommendable when the hydrophilic surface of PC is required.

A Study on the Duplex Treatment of Simultaneous Aluminizing-Chromizing and Plasma Nitriding for Improvement of Surface Properties (Al-Cr의 동시확산과 플라즈마 질화의 복합처리에의한 표면향상에 관한연구)

  • 양준혁;이상률;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.325-333
    • /
    • 1998
  • A duplex surface treatment process of simultaneous aluminizing-chromizing process followed by plasma nitriding was performed on AISI HI3 steel and STS 403 steel. The properties of these duplex-treated steels were investigated and were compared with those of steels treated by single process of either simultaneous aluminizing-chromizing or plasma nilriding, in terms of microstructure, microhardness and high temperature wear resistance. Sim~dtaneous alumizing-chromizing process was done using a 2-step coating cycle and plasma nitriding process was done at $530^{\circ}C$ for 1.5 hour. AISI HI3 steel and STS 403 steel showed a FeA1 compound layer of approximately 350$\mu\textrm{m}$ thickness on the surface after simultaneous diffusion coating and nitrided layer of approximately 70-80$\mu\textrm{m}$ formed after the subsequent plasma nitriding process. The microhardness was improved much more by the duplex surface heatment than only by plasma nitriding. In addition the duplex treated specimens showed an improved high temperature wear resistance.

  • PDF

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.

Atmospheric-Pressure Plasma Treatment of Ethylene-Vinyl Acetate (EVA) to Enhance Adhesion Energy between EVA and Polyurethane (상압 플라즈마 표면처리에 따른 Ethylene-Vinyl Acetate (EVA)의 표면개질 및 Polyurethane과의 접착력 증진)

  • Kim, Jeong-Soon;Uhm, Han-S;Kim, Hyoung-Suk
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.3-11
    • /
    • 2004
  • Plasma treatment is frequently used to increase surface functionality and surface activity. It enables to improve various surface properties such as catalytic selectivity, printability, and interfacial adhesion between various materials. Surface or the ethylene-vinyl acetate (EVA) is exposed under an atmospheric pressure plasma torch (APPT), generated by dielectric barrier discharge (DBD), and the treated surfaces are systemically investigated. Argon, air, and oxygen are used as a processing gas. Properties of the treated EVA surfaces are investigated by the zeta-potential measurements and surface free energies. It is shown that the plasma treatment leads to a drastic increase of surface functional groups of EVA, as the increase of its adhesion energy ($G_{IC}$). Therefore, it is concluded that the APPT process is an effective means to improve adhesion of EVA and polyurethane (PU).

Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

  • Cho, Sang-Jin;Shrestha, Shankar Prasad;Lee, Soon-Bo;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.905-907
    • /
    • 2014
  • The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing $O_2$ flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing $O_2$ flow rate. Resistance changes only slightly with different $O_2$ flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. $O_2$ or $N_2$ plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

Plasma-Treated Poly(lactic-co-glycolic acid) Nanofibers for Tissue Engineering

  • Park, Hong-Hyun;Lee, Kuen-Yong;Lee, Seung-Jin;Park, Ko-Eun;Park, Won-Ho
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.238-243
    • /
    • 2007
  • Nanofibers were prepared by electrospinning a solution of poly(lactic-co-glycolic acid) (PLGA) and their mean diameter was 340 nm. The PLGA nanofibers were treated with a plasma in the presence of either oxygen or ammonia gas to change their surface characteristics. The hydrophilicity of the electrospun PLGA nanofibers was significantly increased by the gas plasma treatment, as confirmed by contact angle measurements. XPS analysis demonstrated that the chemical composition of the PLGA nanofiber surface was influenced by the plasma treatment, resulting in an increase in the number of polar groups, which contributed to the enhanced surface hydrophilicity. The degradation behavior of the PLGA nanofibers was accelerated by the plasma treatment, and the adhesion and proliferation of mouse fibroblasts on the plasma-treated nanofibers were significantly enhanced. This approach to controlling the surface characteristics of nanofibers prepared from biocompatible polymers could be useful in the development of novel polymeric scaffolds for tissue engineering.

Bathochromic Finish of Dyed Fabrics by Low-Temperature Plasma and Sputter Etching Treatment (저온 플라즈마 및 Sputter Etching 처리에 의한 염색직물의 심색화 가공)

  • Pak, Pyong Ki;Lee, Mun Cheul;Park, Geon Yong
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.56-63
    • /
    • 1996
  • Low-temperature plasma treatment or sputter etching is of interest as one of the techniques to modify polymer surface. In this study, poly(ethylene terephthalate)(PET), nylon 6 and cotton fabrics dyed three black dyes were subjected to low-temperature argon plasma and also sputter etching. In relation to bathochromic effect, the surface characteristics of the treated fabrics and films were investigated by means of critical surface tension, SEM and ESCA measurement. The depth of shade of fabrics more increased by the sputter etching technique than argon plasma treatment. Many microcraters on the fiber surface formed by the sputter etching resulted in increase of surface area of the fiber and wettability, but the hydrophobic group was increased by the results of ESCA analysis. In particular the change in reflective index of the fibers was much more effective than the chemical composition of the fiber surface on increasing of the depth of shade.

  • PDF