Plasma-Treated Poly(lactic-co-glycolic acid) Nanofibers for Tissue Engineering

  • Park, Hong-Hyun (Department of Bioengineering, Hanyang University) ;
  • Lee, Kuen-Yong (Department of Bioengineering, Hanyang University) ;
  • Lee, Seung-Jin (College of Pharmacy, Ewha Womans University) ;
  • Park, Ko-Eun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Park, Won-Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • Published : 2007.04.30

Abstract

Nanofibers were prepared by electrospinning a solution of poly(lactic-co-glycolic acid) (PLGA) and their mean diameter was 340 nm. The PLGA nanofibers were treated with a plasma in the presence of either oxygen or ammonia gas to change their surface characteristics. The hydrophilicity of the electrospun PLGA nanofibers was significantly increased by the gas plasma treatment, as confirmed by contact angle measurements. XPS analysis demonstrated that the chemical composition of the PLGA nanofiber surface was influenced by the plasma treatment, resulting in an increase in the number of polar groups, which contributed to the enhanced surface hydrophilicity. The degradation behavior of the PLGA nanofibers was accelerated by the plasma treatment, and the adhesion and proliferation of mouse fibroblasts on the plasma-treated nanofibers were significantly enhanced. This approach to controlling the surface characteristics of nanofibers prepared from biocompatible polymers could be useful in the development of novel polymeric scaffolds for tissue engineering.

Keywords

References

  1. A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, Proc. Natl. Acad. Sci. USA, 103, 2480 (2006)
  2. Y. Hirano and D. J. Mooney, Adv. Mater., 16, 17 (2004)
  3. L. G. Griffith and G. Naughton, Science, 295, 1009 (2002)
  4. K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001) https://doi.org/10.1021/cr990410+
  5. M. P. Lutolf and J. A. Hubbell, Nature Biotechnol., 23, 47 (2005) https://doi.org/10.1038/nbt0105-5
  6. X. H. Liu and P. X. Ma, Ann. Biomed. Engin., 32, 477 (2004)
  7. L. C. Lu, M. J. Yaszemski, and A. G. Mikos, Biomaterials, 22, 3345 (2001) https://doi.org/10.1016/S0142-9612(00)00074-0
  8. J. Khandare and T. Minko, Prog. Polym. Sci., 31, 359 (2006) https://doi.org/10.1016/j.progpolymsci.2005.09.004
  9. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993)
  10. Y. S. Nam and T. G. Park, J. Biomed. Mater. Res., 47, 8 (1999)
  11. L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney, Nature Biotechnol., 17, 551 (1999)
  12. K. Whang, C. H. Thomas, K. E. Healy, and G. A. Nuber, Polymer, 36, 837 (1995)
  13. W. E. Teo and S Ramakrishna, Nanotechnol., 17, R89 (2006)
  14. Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 12, 1197 (2006)
  15. J. Venugopal and S. Ramakrishna, Appl. Biochem. Biotechnol., 125, 147 (2005)
  16. Y. Q. Wang, X. Qu, J. Lu, C. F. Zhu, L. J. Wan, J. L. Yang, J. Z. Bei, and S. G. Wang, Biomaterials, 25, 4777 (2004)
  17. K. Webb, V. Hlady, and P. A. Tresco, J. Biomed. Mater. Res., 41, 422 (1998)
  18. R. Daw, S. Candan, A. J. Beck, A. J. Devlin, I. M. Brook, S. MacNeil, R. A. Dawson, and R. D. Short, Biomaterials, 19, 1717 (1998)
  19. R. Bos, H. C. van der Mei, and H. J. Busscher, FEMS Microbiol., 23, 179 (1999)
  20. F. S. Denes and S. Manolache, Prog. Polym. Sci., 29, 815 (2004) https://doi.org/10.1016/j.progpolymsci.2004.05.001
  21. J. Yang, G. X. Shi, J. Z. Bei, S. G. Wang, Y. L. Cao, Q. X. Shang, G. G. Yang, and W. J. Wang, J. Biomed. Mater. Res., 62, 438 (2002)
  22. Y. Wan, J. Yang, J. Yang, J. Bei, and S. Wang, Biomaterials, 24, 3757 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  23. K. Y. Lee, Macromol. Res., 13, 277 (2005)
  24. H. J. Jung, K. D. Ahn, D. K. Han, and D. J. Ahn, Macromol. Res., 13, 446 (2005)
  25. H. J. Jin, M. O. Hwang, J. S. Yoon, K. H. Lee, I. J. Chin, and M. N. Kim, Macromol. Res., 13, 73 (2005)