Browse > Article

Plasma-Treated Poly(lactic-co-glycolic acid) Nanofibers for Tissue Engineering  

Park, Hong-Hyun (Department of Bioengineering, Hanyang University)
Lee, Kuen-Yong (Department of Bioengineering, Hanyang University)
Lee, Seung-Jin (College of Pharmacy, Ewha Womans University)
Park, Ko-Eun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Park, Won-Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Publication Information
Macromolecular Research / v.15, no.3, 2007 , pp. 238-243 More about this Journal
Abstract
Nanofibers were prepared by electrospinning a solution of poly(lactic-co-glycolic acid) (PLGA) and their mean diameter was 340 nm. The PLGA nanofibers were treated with a plasma in the presence of either oxygen or ammonia gas to change their surface characteristics. The hydrophilicity of the electrospun PLGA nanofibers was significantly increased by the gas plasma treatment, as confirmed by contact angle measurements. XPS analysis demonstrated that the chemical composition of the PLGA nanofiber surface was influenced by the plasma treatment, resulting in an increase in the number of polar groups, which contributed to the enhanced surface hydrophilicity. The degradation behavior of the PLGA nanofibers was accelerated by the plasma treatment, and the adhesion and proliferation of mouse fibroblasts on the plasma-treated nanofibers were significantly enhanced. This approach to controlling the surface characteristics of nanofibers prepared from biocompatible polymers could be useful in the development of novel polymeric scaffolds for tissue engineering.
Keywords
plasma treatment; nanofiber; hydrophilicity; tissue engineering;
Citations & Related Records

Times Cited By Web Of Science : 29  (Related Records In Web of Science)
Times Cited By SCOPUS : 23
연도 인용수 순위
1 Y. Hirano and D. J. Mooney, Adv. Mater., 16, 17 (2004)
2 L. G. Griffith and G. Naughton, Science, 295, 1009 (2002)
3 L. C. Lu, M. J. Yaszemski, and A. G. Mikos, Biomaterials, 22, 3345 (2001)   DOI   ScienceOn
4 A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993)
5 Y. S. Nam and T. G. Park, J. Biomed. Mater. Res., 47, 8 (1999)
6 K. Webb, V. Hlady, and P. A. Tresco, J. Biomed. Mater. Res., 41, 422 (1998)
7 R. Daw, S. Candan, A. J. Beck, A. J. Devlin, I. M. Brook, S. MacNeil, R. A. Dawson, and R. D. Short, Biomaterials, 19, 1717 (1998)
8 R. Bos, H. C. van der Mei, and H. J. Busscher, FEMS Microbiol., 23, 179 (1999)
9 Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 12, 1197 (2006)
10 X. H. Liu and P. X. Ma, Ann. Biomed. Engin., 32, 477 (2004)
11 K. Y. Lee, Macromol. Res., 13, 277 (2005)
12 H. J. Jung, K. D. Ahn, D. K. Han, and D. J. Ahn, Macromol. Res., 13, 446 (2005)
13 J. Yang, G. X. Shi, J. Z. Bei, S. G. Wang, Y. L. Cao, Q. X. Shang, G. G. Yang, and W. J. Wang, J. Biomed. Mater. Res., 62, 438 (2002)
14 J. Khandare and T. Minko, Prog. Polym. Sci., 31, 359 (2006)   DOI   ScienceOn
15 H. J. Jin, M. O. Hwang, J. S. Yoon, K. H. Lee, I. J. Chin, and M. N. Kim, Macromol. Res., 13, 73 (2005)
16 J. Venugopal and S. Ramakrishna, Appl. Biochem. Biotechnol., 125, 147 (2005)
17 L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney, Nature Biotechnol., 17, 551 (1999)
18 Y. Wan, J. Yang, J. Yang, J. Bei, and S. Wang, Biomaterials, 24, 3757 (2003)   DOI   ScienceOn
19 K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001)   DOI   ScienceOn
20 F. S. Denes and S. Manolache, Prog. Polym. Sci., 29, 815 (2004)   DOI   ScienceOn
21 Y. Q. Wang, X. Qu, J. Lu, C. F. Zhu, L. J. Wan, J. L. Yang, J. Z. Bei, and S. G. Wang, Biomaterials, 25, 4777 (2004)
22 M. P. Lutolf and J. A. Hubbell, Nature Biotechnol., 23, 47 (2005)   DOI   ScienceOn
23 K. Whang, C. H. Thomas, K. E. Healy, and G. A. Nuber, Polymer, 36, 837 (1995)
24 W. E. Teo and S Ramakrishna, Nanotechnol., 17, R89 (2006)
25 A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, Proc. Natl. Acad. Sci. USA, 103, 2480 (2006)