• 제목/요약/키워드: PLANTS FAULT

검색결과 157건 처리시간 0.03초

RNN-based integrated system for real-time sensor fault detection and fault-informed accident diagnosis in nuclear power plant accidents

  • Jeonghun Choi;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.814-826
    • /
    • 2023
  • Sensor faults in nuclear power plant instrumentation have the potential to spread negative effects from wrong signals that can cause an accident misdiagnosis by plant operators. To detect sensor faults and make accurate accident diagnoses, prior studies have developed a supervised learning-based sensor fault detection model and an accident diagnosis model with faulty sensor isolation. Even though the developed neural network models demonstrated satisfactory performance, their diagnosis performance should be reevaluated considering real-time connection. When operating in real-time, the diagnosis model is expected to indiscriminately accept fault data before receiving delayed fault information transferred from the previous fault detection model. The uncertainty of neural networks can also have a significant impact following the sensor fault features. In the present work, a pilot study was conducted to connect two models and observe actual outcomes from a real-time application with an integrated system. While the initial results showed an overall successful diagnosis, some issues were observed. To recover the diagnosis performance degradations, additive logics were applied to minimize the diagnosis failures that were not observed in the previous validations of the separate models. The results of a case study were then analyzed in terms of the real-time diagnosis outputs that plant operators would actually face in an emergency situation.

원자력발전소 안전필수시스템 고장허용능력에 대한 자가진단기능 저하 영향 분석 (The Effect of the Fault Tolerant Capability due to Degradation of the Self-diagnostics Function in the Safety Critical System for Nuclear Power Plants)

  • 허섭;황인구;이동영;최헌호;김양모;이상정
    • 전기학회논문지
    • /
    • 제59권8호
    • /
    • pp.1456-1463
    • /
    • 2010
  • The safety critical systems in nuclear power plants should be designed to have a high level of fault tolerant capability because those systems are used for protection or mitigation of the postulated accidents of nuclear reactor. Due to increasing of the system complexity of the digital based system in nuclear fields, the reliability of the digital based systems without an auto-test or a self-diagnostic feature is generally lower than those of analog system. To overcome this problem, additional redundant architectures in each redundant channel and self-diagnostic features are commonly integrated into the digital safety systems. The self diagnostic function is a key factor for increasing fault tolerant capabilities in the digital based safety system. This paper presents an availability and safety evaluation model to analyze the effect to the system's fault tolerant capabilities depending on self-diagnostic features when the loss or erroneous behaviors of self-diagnostic function are expected to occur. The analysis result of the proposed model on the several modules of a safety platform shows that the improvement effect on unavailability of each module has generally become smaller than the result of usage of conventional models and the unavailability itself has changed significantly depending on the characteristics of failures or errors of self-diagnostic function.

A real-time operation aiding expert system using the symptom tree and the fault-consequence digraph

  • Oh, Jeon-Keun;Yoon, En-Sup;Choi, Byung-Nam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.805-812
    • /
    • 1989
  • An efficient diagnostic approach for real-time operation aiding expert system in chemical process plants is discussed. The approach is based on the hybrid of the simplified symptom tree(SST) and the fault consequence digraph(FCD), representation of propagation patterns of fault states. The SST generates fault hypothesis efficiently and the FCD resolve the real fault accurately. Frame based knowledge representation and object-oriented programming make diagnostic system general and efficient. Truth maintenance system enables robust pattern matching and provides enhanced explain facilities. A prototype expert system for supports operation of naphtha furnaces process, called OASYS, has been built and tested to demonstrate this methodology. Utilization of diversified process symbolic data, produced using dynamic normal standards, overcomes the problem of qualitative Boolean reasoning and enhance the applicability.

  • PDF

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Parameter identifiability of Boolean networks with application to fault diagnosis of nuclear plants

  • Dong, Zhe;Pan, Yifei;Huang, Xiaojin
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.599-605
    • /
    • 2018
  • Fault diagnosis depends critically on the selection of sensors monitoring crucial process variables. Boolean network (BN) is composed of nodes and directed edges, where the node state is quantized to the Boolean values of True or False and is determined by the logical functions of the network parameters and the states of other nodes with edges directed to this node. Since BN can describe the fault propagation in a sensor network, it can be applied to propose sensor selection strategy for fault diagnosis. In this article, a sufficient condition for parameter identifiability of BN is first proposed, based on which the sufficient condition for fault identifiability of a sensor network is given. Then, the fault identifiability condition induces a sensor selection strategy for sensor selection. Finally, the theoretical result is applied to the fault diagnosis-oriented sensor selection for a nuclear heating reactor plant, and both the numerical computation and simulation results verify the feasibility of the newly built BN-based sensor selection strategy.

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

FAULT DETECTION COVERAGE QUANTIFICATION OF AUTOMATIC TEST FUNCTIONS OF DIGITAL I&C SYSTEM IN NPPS

  • Choi, Jong-Gyun;Lee, Seung-Jun;Kang, Hyun-Gook;Hur, Seop;Lee, Young-Jun;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.421-428
    • /
    • 2012
  • Analog instrument and control systems in nuclear power plants have recently been replaced with digital systems for safer and more efficient operation. Digital instrument and control systems have adopted various fault-tolerant techniques that help the system correctly and safely perform the specific required functions regardless of the presence of faults. Each fault-tolerant technique has a different inspection period, from real-time monitoring to monthly testing. The range covered by each faulttolerant technique is also different. The digital instrument and control system, therefore, adopts multiple barriers consisting of various fault-tolerant techniques to increase the total fault detection coverage. Even though these fault-tolerant techniques are adopted to ensure and improve the safety of a system, their effects on the system safety have not yet been properly considered in most probabilistic safety analysis models. Therefore, it is necessary to develop an evaluation method that can describe these features of digital instrument and control systems. Several issues must be considered in the fault coverage estimation of a digital instrument and control system, and two of these are addressed in this work. The first is to quantify the fault coverage of each fault-tolerant technique implemented in the system, and the second is to exclude the duplicated effect of fault-tolerant techniques implemented simultaneously at each level of the system's hierarchy, as a fault occurring in a system might be detected by one or more fault-tolerant techniques. For this work, a fault injection experiment was used to obtain the exact relations between faults and multiple barriers of faulttolerant techniques. This experiment was applied to a bistable processor of a reactor protection system.

FUNCTIONAL MODELLING FOR FAULT DIAGNOSIS AND ITS APPLICATION FOR NPP

  • Lind, Morten;Zhang, Xinxin
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.753-772
    • /
    • 2014
  • The paper presents functional modelling and its application for diagnosis in nuclear power plants. Functional modelling is defined and its relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed and it is demonstrated that the levels of abstraction in models for diagnosis must reflect plant knowledge about goals and functions which is represented in functional modelling. Multilevel flow modelling (MFM), which is a method for functional modelling, is introduced briefly and illustrated with a cooling system example. The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool, the MFMSuite. MFM applications in nuclear power systems are described by two examples: a PWR; and an FBR reactor. The PWR example show how MFM can be used to model and reason about operating modes. The FBR example illustrates how the modelling development effort can be managed by proper strategies including decomposition and reuse.

화력 발전소 드럼형 보일러 시스템의 고장 진단을 위한 퍼지 전문가 시스템의 개발 (Development of Fuzzy Expert System for Fault Diagnosis in a Drum-type Boiler System of Fossil Power Plant)

  • 변승현;박세화
    • 전자공학회논문지B
    • /
    • 제31B권10호
    • /
    • pp.53-66
    • /
    • 1994
  • In this paper, a fuzzy expert system is developed for fault diagnoisis of a drum-type boiler system in fossil power plants. The develped fuzzy espert system is composed of knowledge base, fuzzification module, knowledge base process module, knowledge base management module, inference module, and linguistic approximation module. The main objective of the fuzzy expert system is to check the states of the system including the drum level and detect faults such as the feedwater flow sensor fault, feedwater flow control valve fault, and water wall bube rupture. The fuzzy expert system diagnoses faults using process values, manipulated values, and knowledge base which is built via interviews and questionaries with the experts on the plant operations. Finally, the validity of the developed fuzzy expert system is shown via experiments using the digital simulator for boiler system is Seoul Power Plant Unit 4.

  • PDF

Fault Detection and Diagnosis of the Deaerator Level Control System in Nuclear Power Plants

  • Kim Kyung Youn;Lee Yoon Joon
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.73-82
    • /
    • 2004
  • The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is located above the feedwater pumps. The feedwater pumps take the water from the deaerator storage tank, and the net positive suction head(NSPH) should always be ensured. To secure the sufficient NPSH, the deaerator tank is equipped with the level control system of which level sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a model-based fault detection and diagnosis(FDD) is introduced in this study. The dynamic control model is formulated from the relation of input-output flow rates and liquid-level of the deaerator storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by applying the operation data of Yonggwang Units 3 & 4.