• Title/Summary/Keyword: PLANTING POTENTIAL

Search Result 127, Processing Time 0.032 seconds

On-farm Tree Planting and Management Guidelines for Medium to High Potential Areas of Kenya

  • Makee, Luvanda A.
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.392-399
    • /
    • 2016
  • This review paper presents guidelines which stakeholders use in addressing on-farm tree planting configuration, establishment, tending, silvi- cultural management, management of pests and diseases, challenges and opportunities as practiced in the medium to high potential areas of Kenya. The tree planting configurations discussed includes blocks planting (woodlot), boundary, compound planting, home/fruit gardens, trees intercropped or mixed with pasture, trees on riverbanks and roadside. Participatory monitoring and evaluation techniques have been highlighted. The main challenges facing tree planting activities include culture and attitude of local people, land and tree tenure, inadequate technical support, lack of recognition and integration of technical information and indigenous knowledge, capital and labour shortages, lack of appropriate incentives measures, damage by domestic and wild animals, conflict over trees on the boundary and policy and legal issues. This guideline targets forest managers, extension agents, students and other practitioners in policy and day to day decision making processes in Kenya.

The Germination, Cover View and Root Potential Properties of Plants within CSG Planting Block by Mixture Seeding (혼합파종에 따른 CSG 식생 블록 내 식물의 발아, 피복도 및 근계력 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.63-71
    • /
    • 2010
  • This study was performed to evaluate the planting properties and root potential of planting block with mixing seeding of herbaceous plants and cool-season grasses in CSG blocks manufactured by cemented sand and materials (CSG) in order to develop environmentally friendly CSG block applied revegetation. Five types of CSG mix designs with cement contents were determined, and the mechanical properties of CSG materials were studied experimentally. To analyze growth properties of plants within CSG block, germination ratio, visual cover, plant height and root potential were measured in four weeks and eight weeks after seeding. The germination regardless mixture seeding of plants and CSG mixproportions started within 4 ~ 7 days after seeding and the germination ratio were in the range of 60 ~ 65 %. The visual cover of kinds of plants evaluated by visual rating system were in the range of 6 ~ 8 in case of seeding the species of cool-season grasses and were in the range of 4 ~ 6 in case of seeding the species of herbaceous plants in four weeks after seeding. The root potential of CSG block with the species of cool-season grasses and herbaceous plants were in the range of $5.7{\times}10^{-3}{\sim}7.7{\times}10^{-3}$ MPa and $2.3{\times}10^{-3}{\sim}6.7{\times}10^{-3}$ MPa in eight weeks after seeding, respectively.

Effects of Rain Gardens on Removal of Urban Non-point Source Pollutants under Experimental Conditions (실험실 조건에서 레인가든의 도시 비점오염물질 제거효과)

  • Kim, Changsoo;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.676-685
    • /
    • 2012
  • As impermeable layer continues to increase with the urbanization process, direct input of nonpoint source pollutants into water bodies via stormwater has caused serious effects on the aquatic ecosystem. Potential applications of rain gardens are increasing not only as best management practices (BMP) for reducing the level of nonpoint source pollutants but also as an ecological engineering alternative for low impact development (LID). In this study, remediation performance of various planting types, such as a mixed planting system with shrubs and herbaceous plants, was assessed quantitatively to effectively manage stormwater and increase landscape applicability. The mixed planting system with Rhododendron lateritium and Zoysia japonica showed the highest removal performance of $76.9{\pm}7.6%$ and $58.4{\pm}5.0%$ for total nitrogen and $89.9{\pm}7.9%$ and $82.4{\pm}5.2%$ for total phosphorus at rainfall intensities of 2.5 mm/h and 5.0 mm/h, respectively. The mixed planting system also showed the highest removal performance for heavy metals. The results suggest that a rain garden with the mixed planting system has high potential applicability as a natural reduction system for nonpoint source pollutants in order to manage stormwater with low concentrations of pollutants and will increase water recycling in urban areas.

Effect of Planting Density and Nitrogen Level on Growth and Yield in Heavy Panicle Weight Type of Japonica Rice

  • Kim, Bo-Kyeong;Kim, Hyun-Ho;Ko, Jae-Kwon;Shin, Hyun-Tak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • To investigate the effects of planting density and nitrogen level on growth and yield potential of newly bred heavy panicle japonica rice with large grain (Iksan 435 and Iksan 438) or many spikelets per panicle(HR14022-21-8-4 and HR14022-21-8-6), four heavy panicle type rices and two many panicle type rices(Dongjinbyeo and Donganbyeo) as the checks were planted under standard planting density (30$\times$15 cm) and dense planting density (15$\times$15 cm) with two nitrogen levels of standard nitrogen level(110 kg h $a^{-1}$) and heavy nitrogen level(165 kg h $a^{-1}$). Effective tiller rate decreased in dense planting or heavy nitrogen, when compared to standard nitrogen and planting, while leaf area index and to dry weight increased in dense planting or heavy nitrogen. Tiller numbers and panicle numbers were more increased by dense planting than heavy nitrogen, whereas spikelet numbers were more increased by heavy nitrogen than dense planting. Ripened grain ratio was slightly lower only in dense planting. 1,000 grain weight in brown rice was not significantly different in dense planting or heavy nitrogen. Milled rice yield was highest in heavy nitrogen with standard planting for heavy panicle type rice, while yield for many panicle type rice was highest in heavy nitrogen with dense planting, suggesting that many panicle type rice possesses higher adapt-ability for dense planting than heavy panicle type rice. Path coefficient analysis revealed that top dry weight, spikelet number and grain weight were the greatest positive contributors to yield, whereas tiller number was negative to yield.d.

  • PDF

Projecting the Spatio-Temporal Change in Yield Potential of Kimchi Cabbage (Brassica campestris L. ssp. pekinensis) under Intentional Shift of Planting Date (정식일 이동에 따른 배추 잠재수량성의 시공간적 변화 전망)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.298-306
    • /
    • 2016
  • Planting date shift is one of the means of adapting to climate change in Kimchi Cabbage growers in major production areas in Korea. This study suggests a method to estimate the potential yield of Kimchi Cabbage based on daily temperature accumulation during the growth period from planting to maturity which is determined by a plant phenology model tuned to Kimchi Cabbage. The phenology model converts any changes in the thermal condition caused by the planting date shift into the heat unit accumulation during the growth period, which can be calculated from daily temperatures. The physiological maturity is estimated by applying this model to a variable development rate function depending either on growth or heading stage. The cabbage yield prediction model (Ahn et al., 2014) calculates the potential yield of summer cabbage by accumulating daily heat units for the growth period. We combined these two models and applied to the 1km resolution climate scenario (2000-2100) based on RCP8.5 for South Korea. Potential yields in the current normal year (2001-2010) and the future normal year (2011-2040, 2041-2070, and 2071-2100) were estimated for each grid cell with the planting dates of July 1, August 1, September 1, and October 1. Based on the results, we divided the whole South Korea into 810 watersheds, and devised a three - dimensional evaluation chart of the time - space - yield that enables the user to easily find the optimal planting date for a given watershed. This method is expected to be useful not only for exploring future new cultivation sites but also for developing cropping systems capable of adaptation to climate change without changing varieties in existing production areas.

Changes in Concentrations of Nutrients and Heavy Metals of Plants and Soils in Rain Garden Systems used for Non-point Source Pollution Management (비점오염원관리를 위한 레인가든에서 식물과 토양의 영양물질과 중금속 농도변화)

  • Kim, Chang-Soo;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • Recently, there has been increasing interest in the use of rain garden systems as environmentally friendly ecological infrastructures for controlling stormwater runoff and managing non-point source pollution and information for the contamination of soil and plants can be essential for sustainable rain garden management. In this study, four rain garden mesocosms, namely single species planting with Rhododendron lateritium, single species planting with Zoysia japonica, mixed planting with R. lateritium and Z. japonica, and control without plants, were tested to investigate the change in concentrations of nutrients (N and P) and heavy metals (Cd, Cu, Pb, and Ni) in the soil and plants used in the rain garden system. The presence of plants resulted in greater nutrient retention in soil and lower potential leaching from the system. All systems showed an increase in the heavy metal concentrations in soil. The concentrations of most heavy metals were found to be higher in the herbaceous plants (Z. japonica) than in the shrubs (R. lateritium). The belowground part (root) had higher heavy metal concentrations than the aboveground part (leaf) but also showed a potential increase in leaves, and hence, careful plant management should be considered during rain garden operation.

Numerical Analysis on Drain Capacity and Vegetation Potential of Unsaturated Made-Planting Soil (불포화 인공 식재 지반의 배수 성능과 식생 가능 조건에 대한 수치해석적 분석)

  • Kim, Sung-Min;Kim, Choong-Eon;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.33-41
    • /
    • 2016
  • This study attempted to investigate drain capacity and vegetation potential of made-planting soil via finite element simulations. Engineering drain capacity of made-planting soil can be evaluated by an analysis of unsaturated soils. In a perspective for vegetation landscape, it is necessary to check whether the minimum amount of water in the made-planting soil can be supplied for the survival of plants. Herein, 1-m high soil column covered by made-planting soil were numerically simulated. Numerical results showed that how the coefficient of permeability of saturated soil and soil-water characteristics of unsaturated soil are considered significantly influences the drain capacity of soils. Variation in the volumetric water content within the Least Limiting Water Range (LLWR) provides us with information on whether the soil can contain a sufficient amount of water for the plants to survive the drought.

Effects of Panicle Position and Planting Density on the Physicochemical Properties of Starch in Panicle Number Type Rice

  • Han, Chae-Min;Shin, Jong-Hee;Kwon, Jung-Bae;Kim, Sang-Kuk;Won, Jong-Gun;Ryu, Jung-Gi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The tillering potential of panicle number type (PNT) rice greatly varies with planting density. Moreover, grain filling and ripening differ depending on the panicle position, which may further affect rice grain quality. The present study evaluated the grain quality of PNT rice sparsely planted to reduce production costs. The physicochemical characteristics of starch from the grains of PNT type rice 'Ilpum' planted at different densities (37, 50, 60, and 80 plants/3.3 m2) and at different positions of panicles (upper or lower on the culm) were determined. Overall, as the planting density decreased, the number of panicles increased but the starch content decreased, which further reduced the 1,000-grain weight. In particular, at the lowest density (37 plants/3.3 m2), protein content increased but particle size, enthalpy, and relative crystallinity decreased. The effects were more pronounced at lower than at upper panicle positions. These findings indicate that tillering potential differs with planting density, ultimately affecting the palatability of rice grains. Based on these findings, we propose restricting rice transplantation to a planting density of ≤37 plants/3.3 m2 to achieve the best quality of grains at lower costs and with less labor.

Yield Potential of Improved Tropical Japonica Rice under Temperate Environment in Korea

  • Lee, Kyu-Seong;Ko, Jae-Kwon;Kim, Jong-Seok;Lee, Jae-Kil;Shin, Hyun-Tak;Cho, Soo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.214-220
    • /
    • 1999
  • Rice production in Korea has markedly increased during the last two decades due to newly developed high yielding varieties and improved production technology. This experiment was conducted to determine the potential of tropical japonica germplasm in enhancing the yield of temperate japonica. The yield performance of two tropical japonicas (IR 65597-29-3-2 and IR66154-52-1-2) and one temperate japonica (Dongjinbyeo) was compared at different plant densities and nitrogen levels under Korean environmental conditions. Although tropical japonicas showed low tillering habit and large panicles, they had similar leaf area index and dry weight at heading stage to Dongjinbyeo of the high tillering type indicating that there was not much difference between tropical and temperate japonica in terms of biomass production. The highest milled rice yield of 6.15 t/ha was obtained from Dongjinbyeo at a high nitrogen level with less planting density (220 kg N/ha and 30 $\times$ 15 cm). However, those of the two tropical japonicas were 5.36 t/ha at the condition of 165 kg N/ha and 30 x 10 cm planting density and 5.06 t/ha at the condition of 165kgN/ha and 15 x 15 cm planting density, respectively. Ripened grain of tropical japonicas ranged from 65 to 87%, while that Dongjinbyeo ranged from 82 to 97% under Korean conditions.

  • PDF

Comparison of Yield Potential According to Planting Density for Use of Small Potatoes in Greenhouse Cultivation

  • Yoon-Ho Song;Yoon-Sang Jo;A-Reum Park;Gyu-Seuk Han;Jin-Hee Meng;Geon-Su Ha
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.43-43
    • /
    • 2022
  • This study was carried out to investigate planting density suitable for technology that can produce a lot of small seed potatoes to machine sowing, the test material was made of less than 3 g of seed potatoes, and planting density was 75×10, 75×15, 75×20cm. the results of the test study were as follows, number of potatoes per 10a and number of potatoes under 50 g were the most 75×10cm in 2sowing methods. In view of these results, planting density suitable for technology that can produce a lot of small seed potatoes to machine sowing is judged 75×10cm in 2sowing methods. In order for this study to be applied in the agricultural field, cultivation management such as adequate water supply will be required.

  • PDF