• Title/Summary/Keyword: PLAG1

Search Result 4, Processing Time 0.016 seconds

FUSION OF THE PLAG1 AND CTNNB1 GENES IN PLEOMORPHIC ADENOMA OF THE SALIVARY GLANDS (타액선 다형성 선종에서의 PLAG1과 CTNNB1 유전자 융합)

  • Kim, Jae-Jin;Kim, Eun-Seok;Ko, Seung-O;Kim, Hyo-Bun;Cho, Nam-Pyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.4
    • /
    • pp.206-211
    • /
    • 2003
  • The pleomorphic adenoma is the most common neoplasm involving both the major and minor salivary glands. It is a benign, slowgrowing tumor, but local recurrences can occur. The pleomorphic adenoma gene 1 (PLAG1), which is a novel zinc finger gene, is frequently activated by reciprocal chromosomal translocations involving 8q12 in a subset of salivary gland pleomorphic adenomas. This experimental study was preformed to observe the translocation patterns between PLAG1 gene and the three translocation partner genes. We also have analyzed the presence of PLAG1 transcripts by RT-PCR. CTNNB1/PLAG1 gene fusion was observed in three of nine pleomorphic adnomas. However, LIFR/PLAG1 and SII/PLAG1 gene fusions were not detectable. All of three gene fusions was not detectable in one Warthin's tumor and three inflammatory salivary gland tissues. PLAG1 transcripts were expressed in all inflammatory salivary gland tissues and tumors except for three pleomorphic adenomas. Of particular one pleomorphic adenoma showing CTNNB1/PLAG1 gene fusion did not express PLAG1 transcipt. Our data indicate that gene fusion involving PLAG1 is a frequent event in pleomorphic adenoma, but correlation between gene fusion involving PLAG1 and PLAG1 transcription is not definite.

Effect of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol on Immune Functions in Healthy Adults in a Randomized Controlled Trial

  • Hwang, Hee-Jin;Sohn, Ki-Young;Han, Yong-Hae;Chong, Saeho;Yoon, Sun Young;Kim, Young-Jun;Jeong, Jinseoun;Kim, Sang-Hwan;Kim, Jae Wha
    • IMMUNE NETWORK
    • /
    • v.15 no.3
    • /
    • pp.150-160
    • /
    • 2015
  • We previously reported that 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) accelerates hematopoiesis and has an improving effect on animal disease models such as sepsis and asthma. The effects of PLAG supplementation on immune modulation were assessed in healthy men and women. The objective was to evaluate the effects of PLAG supplementation on immune regulatory functions such as activities of immune cells and cytokine production. A randomized double blind placebo-controlled trial was conducted. Seventy-five participants were assigned to one of two groups; all participants had an appropriate number of white blood cells on the testing day. The PLAG group (n=27) received oral PLAG supplements and the control group (n=22) received oral soybean oil supplements. IL-4 and IL-6 production by peripheral blood mononuclear cells (PBMC) were lower (p<0.001 and p<0.001, respectively) with PLAG than with soybean oil. However, the production of IL-2 and IFN-$\gamma$ by PBMC was unaltered with PLAG supplementation. The B cell proliferation decreased significantly in the PLAG group compared to the soybean oil control (p<0.05). The intake of PLAG in healthy adults for 4 weeks was deemed safe. These data suggest that PLAG has an immunomodulatory function that inhibits the excessive immune activity of immunological disorders such as atopic and autoimmune diseases. PLAG could improve the condition of these diseases safely as a health food supplement.

Identification of genomic diversity and selection signatures in Luxi cattle using whole-genome sequencing data

  • Mingyue Hu;Lulu Shi;Wenfeng Yi;Feng Li;Shouqing Yan
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.461-470
    • /
    • 2024
  • Objective: The objective of this study was to investigate the genetic diversity, population structure and whole-genome selection signatures of Luxi cattle to reveal its genomic characteristics in terms of meat and carcass traits, skeletal muscle development, body size, and other traits. Methods: To further analyze the genomic characteristics of Luxi cattle, this study sequenced the whole-genome of 16 individuals from the core conservation farm in Shandong region, and collected 174 published genomes of cattle for conjoint analysis. Furthermore, three different statistics (pi, Fst, and XP-EHH) were used to detect potential positive selection signatures related to selection in Luxi cattle. Moreover, gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed to reveal the potential biological function of candidate genes harbored in selected regions. Results: The results showed that Luxi cattle had high genomic diversity and low inbreeding levels. Using three complementary methods (pi, Fst, and XP-EHH) to detect the signatures of selection in the Luxi cattle genome, there were 2,941, 2,221 and 1,304 potentially selected genes identified, respectively. Furthermore, there were 45 genes annotated in common overlapping genomic regions covered 0.723 Mb, including PLAG1 zinc finger (PLAG1), dedicator of cytokinesis 3 (DOCK3), ephrin A2 (EFNA2), DAZ associated protein 1 (DAZAP1), Ral GTPase activating protein catalytic subunit alpha 1 (RALGAPA1), mediator complex subunit 13 (MED13), and decaprenyl diphosphate synthase subunit 2 (PDSS2), most of which were enriched in pathways related to muscle growth and differentiation and immunity. Conclusion: In this study, we provided a series of genes associated with important economic traits were found in positive selection regions, and a scientific basis for the scientific conservation and genetic improvement of Luxi cattle.

Signatures of positive selection underlying beef production traits in Korean cattle breeds

  • Edea, Zewdu;Jung, Kyoung Sub;Shin, Sung-Sub;Yoo, Song-Won;Choi, Jae Won;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.293-305
    • /
    • 2020
  • The difference in the breeding programs and population history may have diversely shaped the genomes of Korean native cattle breeds. In the absence of phenotypic data, comparisons of breeds that have been subjected to different selective pressures can aid to identify genomic regions and genes controlling qualitative and complex traits. In this study to decipher genetic variation and identify evidence of divergent selection, 3 Korean cattle breeds were genotyped using the recently developed high-density GeneSeek Genomic Profiler F250 (GGP-F250) array. The three Korean cattle breeds clustered according to their coat color phenotypes and breeding programs. The Heugu breed reliably showed smaller effective population size at all generations considered. Across the autosomal chromosomes, 113 and 83 annotated genes were identified from Hanwoo-Chikso and Hanwoo-Heugu comparisons, respectively of which 16 genes were shared between the two pairwise comparisons. The most important signals of selection were detected on bovine chromosomes 14 (24.39-25.13 Mb) and 18 (13.34-15.07 Mb), containing genes related to body size, and coat color (XKR4, LYN, PLAG1, SDR16C5, TMEM68, CDH15, MC1R, and GALNS). Some of the candidate genes are also associated with meat quality traits (ACSF3, EIF2B1, BANP, APCDD1, and GALM) and harbor quantitative trait locus (QTL) for beef production traits. Further functional analysis revealed that the candidate genes (DBI, ACSF3, HINT2, GBA2, AGPAT5, SCAP, ELP6, APOB, and RBL1) were involved in gene ontology (GO) terms relevant to meat quality including fatty acid oxidation, biosynthesis, and lipid storage. Candidate genes previously known to affect beef production and quality traits could be used in the beef cattle selection strategies.