• Title/Summary/Keyword: PKC-dependent

Search Result 144, Processing Time 0.02 seconds

Effects of insulin and IGF on growth and functional differentiation in primary cultured rabbit kidney proximal tubule cells - Effects of IGF-I on Na+ uptake - (초대배양된 토끼 신장 근위세뇨관세포의 성장과 기능분화에 대한 insulin과 IGF의 효과 - Na+ uptake에 대한 IGF-I의 효과 -)

  • Han, Ho-jae;Park, Kwon-moo;Lee, Jang-hern;Yang, IL-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.783-794
    • /
    • 1996
  • It has been suggested that ion transport systems are intimately involved in mediating the effects of growth regulatory factors on the growth of a number of different types of animal cells in vivo. The functional importance of the apical membrane $Na^+/H^+$ antiporter in the renal proximal tubule is evidenced by estimates that this transporter mediates the reabsorption of approximately one third of the filtered load of sodium and the bulk of the secretion of hydrogen ions. This study was designed to investigate the pathway utilized by IGF-I in regulating sodium transport in primary cultured renal proximal tubule cells. Results were as follows : 1. $Na^+$ was observed to accumulate in the primary cells as a function of time. Raising the concentration of extracellular NaCl induced an decrease in $Na^+$ uptake compared with control cells in a dose dependent manner. The rate of $Na^+$ uptake into the primary cells was about two times higher in the absence of NaCl($40.11{\pm}1.76pmole\;Na^+/mg\;protein/min$) than in the presence of 140mM NaCl($17.82{\pm}0.94pmole\;Na^+/mg\;protein/min$) at the 30 minute uptake. 2. $Na^+$ uptake was inhibited by IAA($1{\times}10^{-4}M$) or valinomycin($5{\times}10^{-6}M$) treatment($50.51{\pm}4.04$ and $57.65{\pm}2.27$ of that of control, respectively). $Na^+$ uptake by the primary proximal tubule cells was significantly increased by ouabain($5{\times}10^{-5}M$) treatment($140.23{\pm}3.37%$ of that of control). When actinomycin D($1{\times}10^{-7}M$) or cycloheximide($4{\times}10^{-5}M$) was applied, $Na^+$ uptake was decreased to $90.21{\pm}2.39%$ or $89.64{\pm}3.69%$ of control in IGF-I($1{\times}10^{-5}M$) treated cells, respectively. 3. Extracellular cAMP decreased $Na^+$ uptake in a dose-dependent manner($10^{-8}-10^{-4}M$). IBMX($5{\times}10^{-5}M$) also inhibited $Na^+$ uptake. Treatment of cells with pertussis toxin(50pg/ml) or cholera toxin($1{\mu}g/ml$) inhibited $Na^+$ uptake. Extracellular PMA decreased $Na^+$ uptake in a dose-dependent manner(1-100ng/ml). 100 ng/ml PMA concentration significantly inhibited $Na^+$ uptake in IGF-I treated cells. However, staurosporine($1{\times}10^{-7}M$) had no effect on $Na^+$ uptake. When PMA and staurosporine were added together, the inhibition of $Na^+$ uptake was not observed. In conclusion, sodium uptake in primary cultured rabbit renal proximal tubule cells was dependent on membrane potentials and intracellular energy levels. IGF-I stimulates sodium uptake through mechanisms that involve some degree of de novo protein and/or RNA synthesis, and cAMP and/or PKC pathway mediating the action mechanisms of IGF-I.

  • PDF

Effects of brefeldin A on spontaneous and delayed apoptosis of human neutrophils (호중구의 자연 세포사멸 및 세포사멸 지연에 대한 Brefeldin A의 영향)

  • 김재석;이민정;이창민;이상화;배외식;곽종영
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.452-459
    • /
    • 2002
  • Neutrophil apoptosis is a constitutive process that can be enhanced or delayed by various stimuli. In this study, effect of brefeldin A (BFA), which affects biological process of secretion, on constitutive and delayed apoptosis of neutrophils was investigated. Neutrophil apoptosis was determined after culturing for 20 hr in vitro by morphological changes, annexin V staining and DNA electrophoresis. BFA increased the constitutive apoptotic rate of neutrophils in dose-dependent manner. The delay of apoptosis induced by granulocyte macrophage-colony stimulating factor and lipopolysaccharide was also blocked by 10 $\mu$M of BFA. However, this effect of BFA was less marked when neutrophils were treated with dexamethasone, interleukin-8, or dibutyryl-cAMP. Moreover, the delay of neutrophil apoptosis induced by rottlerin, a specific inhibitor of protein kinase C-$\delta$ was significantly abrogated by BFA. Although BFA-induced apoptosis was not blocked by the caspase-3 inhibitor, zDEVD-fmk, expression levels of myeloid cell leukemia-1 (Mcl-1) were down-regulated by BFA. These results suggest that derangement of vesicular protein transport may be involved in the apoptosis of neutrophils, and that the action of BFA on apoptosis is dependent on changes in the expression of Mcl-1.

Upregulation of MMP is Mediated by MEK1 Activation During Differentiation of Monocyte into Macrophage

  • Lim, Jae-Won;Cho, Yoon-Jung;Lee, Dong-Hyun;Jung, Byung-Chul;Kang, Han-Sol;Kim, Tack-Joong;Rhee, Ki-Jong;Kim, Tae-Ue;Kim, Yoon-Suk
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.104-111
    • /
    • 2012
  • Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases which degrade extracellular matrix (ECM) during embryogenesis, wound healing, and tissue remodeling. Dysregulation of MMP activity is also associated with various pathological inflammatory conditions. In this study, we examined the expression pattern of MMPs during PMA-induced differentiation of THP-1 monocytic cells into macrophages. We found that MMP1, MMP8, MMP3, MMP10, MMP12, MMP19, MMP9, and MMP7 were upregulated during differentiation whereas MMP2 remained unchanged. Expression of MMPs increased in a time-dependent manner; MMP1, MMP8, MMP3, MMP10, and MMP12 increased beginning at 60 hr post PMA treatment whereas MMP19, MMP9, and MMP7 increased beginning at 24 hr post PMA treatment. To identify signal transduction pathways involved in PMA-induced upregulation of MMPs, we treated PMA-differentiated THP-1 cells with specific inhibitors for PKC, MEK1, NF-${\kappa}B$, PI3K, p38 MAPK and PLC. We found that inhibition of the MEK1 pathway blocked PMA-induced upregulation of all MMPs to varying degrees except for MMP-2. In addition, expression of select MMPs was inhibited by PI3K, p38 MAPK and PLC inhibitors. In conclusion, we show that of the MMPs examined, most MMPs were up-regulated during differentiation of monocyte into macrophage via the MEK1 pathway. These results provide basic information for studying MMPs expression during macrophage differentiation.

Anti-nociceptive and Anti-inflammatory Effects of Gami-cheongyulsaseub-tang in Arthritic Model (관절염 모델에서 가미청열사습탕(加味淸熱瀉濕湯)의 진통 및 소염 효과에 관한 연구)

  • Kim, Il-Hyun;Lee, Ha-Il;Lee, Se-Won;Kwon, Young-Mi;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.1
    • /
    • pp.27-44
    • /
    • 2015
  • Objectives This study was carried out to find the effects of Gami-cheongyulsaseub-tang (hereinafter referred to GCST) on the inhibition of zymosan-induced pain in rats and collagen II-induced arthritis (CIA) in DBA/1J mouse. Methods As an acute inflammatory pain model, peripheral inflammation was induced by intraplantar injection of zymosan into the right hind paw in rats and then the hyperalgesia and pain regulating factors in spinal cord were analyzed. As a chronic inflammation model, the mixture of collagen II and complete Freund's adjuvant was treated into mice to establish rheumatoid arthritis and then body weight, thickness of hind paw, pathological change of spleen, immunological rheumatoid factor (IgG1, IgG2a, IgG2b, IgM and anti-collagen II), pro-inflammatory cytokines, and bone injury were analyzed. Results In the acute inflammatory pain model, GCST significantly inhibited the thermal and mechanical hyperalgesia and the pain regulating factors, including Fos, CD11b, PKA and PKC, in the spinal cord with a dose-dependent manner. In the chronic rheumatoid arthritis model, GCST administration decreased arthritic index and paw edema as compared with CIA control group. In particular, GCST reduced significantly the serum levels of total IgG2a, IgG2b, IgM, and specific anti-collagen II, but not total IgG1. GCST also resulted in the attenuation of bone injury and spleen enlargement/adhesion in CIA mice. Moreover, the secretion of pro-inflammatory cytokines TNF-${\alpha}$ and IL-$1{\beta}$ in CIA mice was significantly reduced by GCST in a dose-dependent manner. Conclusions Comparison of the results in this study showed that GCST had anti-nociceptive and immunomodulatory effects. These data imply that GCST can be used as an effective drug for not only rheumatoid arthritic pain but also other auto-immune diseases.

Regulation of Taurine Transporter Activity by Glucocorticoid Hormone

  • Kim, Ha-Won;Shim, Mi-Ja;Kim, Won-Bae;Kim, Byong-Kak
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.527-532
    • /
    • 1995
  • Human taurine transporter has 12 transmembrane domains and its molecular weight is 69.6 kDa. The long cytoplasmic carboxy and amino termini might function as regulatory attachment sites for other proteins. Six potential protein kinase C phosphorylation sites have been reported in human taurine transporter. In this report, we studied the effects of phorbol 12-myristate 13-acetate (PMA) and glucocorticoid hormone on taurine transportation in the RAW 264.7, mouse macrophage cell line. When the cells were incubated with $[^{3}H]taurine$ in the presence or absence of $Na^+$ ion for 40 min at $37^{\circ}C$, the [$[^{3}H]taurine$ uptake rate was 780-times higher in the $Na^{+}-containing$ buffer than in the $Na^{+}-deficient$ buffer, indicating that this cell line expresses taurine transporter protein on the cell surface. THP1, a human promonocyte cell line, also showed a similar property. The $[^{3}H]taurine$ uptake rate was not influenced by the inflammatory inducing cytokines such as interleukin-1, gamma-interferon or interleukin-1+gamma-interferon, but was decreased by the PMA in the RAW 264.7 cell line. This suggests that activation of protein kinase C inhibits taurine transporter activity directly or indirectly. The inhibition of $[^{3}H]taurine$ uptake by PMA was time-dependent. Maximal inhibition occurred in one hr stimulation with PMA Increasing the treatment time beyond one h reduced the $[^{3}H]taurine$ uptake inhibition due to the depletion or inactivation of protein kinase C. The cell line also showed concentration-dependent $[^{3}H]taurine$ uptake under PMA stimulation. The phorbol-ester caused 23% inhibition at the concentration of 1 ${\mu}m$ PMA. The inhibition was significant even at a concentration as low as 10 nM PMA The reduced $[^{3}H]taurine$ uptake could be recovered by treatment with glucocorticosteroid hormone. Dexamethasone led to recover of the reduced taurine uptake induced by phorbol-ester, recovering maximally after one hr. This may suggest that macrophage cells require higher taurine concentration in a stressed state, for the secretion of glucocorticoid hormone is increased by hypothalamo-pituitary-adrenocortical (HPA) axis activation in the blood stream.

  • PDF

A Study on the Post-Receptor Mechanism of Adenosine Receptor on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 관여하는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구)

  • Choi, Bong-Kyu;Oh, Jae-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.263-272
    • /
    • 1994
  • Since it was been reported that the depolarization-induced ACh release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the ACh release has not been clearly elucidated yet. Therefore, it was attempted to clarify the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of ACh release in this study. Slices from rat hippocampus were equilibrated with $^3H-choline$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $VCm^{-1}$, 2ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $0.3{\sim}300\;{\mu}M$, decreased the ACh release in a dose-dependent manner, without affecting the basal rate of release. The adenosine effects were significantly inhibited by $DPCPX\;(2\;{\mu}M)$, a selective $A_1-receptor$ antagonist. The responses to N-ethylmaleimide $(10&30{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked ACh-release and the basal release, and the adenosine effects were completely abolished by NEM pretreatment. PDB $(1{\sim}10\;{\mu}M)$, a specific protein kinase C (PKC) activator, increased, whereas PMB $(0.03{\sim}1\;mg)$, a PKC inhibitor, decreased the evoked ACh-release, and the adenosine effects were not affected by these agents. Nifedipine $(1\;{\mu}M)$, a $Ca^{2+}\;-channel$ blocker of dihydropyridine analogue, significantly inhibited the adenosine effect, but glibenclamide, a $K^+-channel$ blocker, did not. Finally, 8-bromo cyclic AMP $(100\;&\;300{\mu}M)$, a membrane-permeable analogue of cAMP, did not alter the ACh release, but adenosine effects were inhibited by pretreatment with large dose of 8-br-cAMP $(300\;{\mu}M)$. These results indicate that the decrement of the evoked ACh-release by $A_1-adenosine$ receptor is mediated by the G-protein, and nifedipine-sensitive $Ca^{2+}-channel$ and adenylate cyclase system are coupled partly to this effect, and that protein kinase C and glibenclamide-sensitive $K{^+}-channel$ are not involved in this process.

  • PDF

Extract of Rubus coreanus Fruits Increases Expression and Activity of Endothelial Nitric Oxide Synthase in the Human Umbilical Vein Endothelial Cells (복분자 추출물에 의한 내피세포 NO 합성효소의 활성과 발현 증가)

  • Yoon, Hyun-Joong;Park, Soo-Young;Oh, Sung-Tack;Lee, Kee-Young;Yang, Sung-Yeul
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.44-55
    • /
    • 2011
  • This study aimed to investigate the effects of water extract of Rubus coreanus (RCE) on the expression and activity of endothelial nitric oxide synthase (eNOS), as well as its signal transduction pathways in human umbilical vein endothelial cells (HUVECs). The specific inhibitors of NOS show RCE treatment increases NO production in HUVECs due to the up-regulation of eNOS rather than iNOS. The real-time expression level of eNOS mRNA was also increased upon RCE treatment in HUVECs. While a PKC-specific inhibitor, RO-317549, did not alter RCE-induced NO production in HUVECs, tamoxifen (estrogen receptor-specific inhibitor), PD98059 (ERK-specific inhibitor) and LY-294002 (PI3K/Akt-specific inhibitor) did have suppressive effects. Increased NO production by RCE seems to result from a higher level of active eNOS (pSer1177). Specifically, inhibition of ERK not only decreased the level of active eNOS, but also increased the inactive form of the enzyme (pThr495) in HUVECs. This study suggests that RCE treatment increases NO production in HUVECs due to the increased expression and activity of eNOS. It is also shown that RCE-induced eNOS activation occurs partly through the binding of RCE to the estrogen receptor, along with ERK and PI3K/Akt-dependent signal transduction pathways. In addition, the regulatory binding proteins of eNOS including Hsp90 and caveolin-1 were related to these effects of RCE on eNOS activity in HUVECs.

Mechanisms of Insulinotropic Effect of YHB-2017 [Genistein] Isolated from fermentation Broths of Streptomyces sp. (방선균에서 유래한 YHB-2017 [Genistein]의 인슐린 분비 촉진 작용 기전)

  • Kwag, Won-Jae;Park, You-Hoi;Park, Jun-Chul;Lee, Byung-Kyu;Kang, Yup;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.466-473
    • /
    • 2006
  • Impaired insulin secretion from pancreatic beta-cells in response to glucose is an important feature in the pathology of non-insulin-dependent diabetes mellitus (NIDDM). In the course of screening for useful insulin secretagogues, we have isolated and identified YHB-2017 (Genistein) as a insulin secretion potentiator from fermentation broths of our in-house microbial library. The insulinotropic activity of YHB-2017 in isolated rat pancreatic islets was exerted only at high concentration of glucose (8.3-16 mM) but not at low concentration of glucose (3.3-5.5 mM). Also, in perifusion study with isolated rat pancreatic islets, YHB-2017 stimulated insulin secretion in a time-dependent manner when YHB-2017 was added to KRB buffer containing 16 mM glucose. In the presence of $200\;{\mu}M$ diazoxide and 35 mM KCI, which stimulates maximum $Ca^{2+}$ influx independently of KATP channel, YHB-2017 enhanced KATP channel-independent insulin secretion at high concentration glucose (16 mM). To elucidate the mechanisms of the glucose-dependent potentiation effect of YHB-2017, pharmacologic inhibitors for protein kinase A, protein kinase C and calcium/calmodulin kinase II were pre-treated and then the potentiation effect of YHB-2017 on insulin secretion was investigated. Pre-treatment of H89 as a PKA inhibitor had a significant inhibitory effect on YHB-2017-induced potentiation effect. Furthermore, western immunoblotting analyses revealed that YHB-2017 increased phosphorylation of PKA substrates and cAMP response element-binding protein (CREB) under high concentration of glucose. These results demonstrated that the insulinotropic effect of YHB-2017 is mediated through PKA signal pathway and activated amplifying $K_{ATP}$ channel-independent insulin secretion pathway.

Cellular Pathways in Agonist-induced Gallbladder Muscle Contraction in the Cat (고양이의 담낭근 수축에 있어서 세포내 기전)

  • Rhim, Byung-Yong;Kim, Chi-Dae;Kim, Dong-Heon;Biancani, Piero;Behar, Jose
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.67-74
    • /
    • 1996
  • Cholecystokinin octapeptide (CCK-8), acetylcholine (ACh) and KCl caused a dose dependent contraction in muscle cells enzymatically digested from cat gallbladder. Maximal contraction was obtained at concentration of $10^{-9}M$ for CCK-8, $10^{-5}M$ for ACh and 20mM for KCl. CCK-8 induced contraction was unaffected in calcium free physiological salt solution (PSS) and was completely blocked by strontium substitution for calcium (p<0.001). In contrast, KCl evoked contraction was blocked in calcium free PSS (p<0.01) but was unaffected by strontium replacement of calcium. The contraction elicited by ACh was only slightly reduced in calcium free PSS (p<0.05) and was unaltered by strontium. Muscle cells permeabilized with saponin contracted in response to inositol 1,4.5-trisphosphate $(IP_3)$ and CCK-8. The contraction was blocked by the calmodulin antagonist CGS 9343B (p<0.001), whereas heparin completely blocked the effect of $IP_3$ (p<0.001). The protein kinase C (PKC) antagonist H7 had no effect on either agonist. We conclude that CCK-8 induced gallbladder muscle contraction is mediated by $IP_3$ dependent intracellular calcium release from intracellular stores and a calmodulin dependent pathway; ACh may utilize both extracellular and intracellular calcium. KCl causes muscle contracrion through influx of extracellular calcium and a calmodulin independent machanism.

  • PDF

Effect of Neurogranin Phosphorylation on Oxidative Stress by Hydrogen Peroxide in Early Onset of Batten Disease (과산화수소에 의한 산화스트레스가 영아형 바텐병에서 neurogranin의 인산화에 미치는 영향)

  • Yoon, Dong-Ho;Kim, Han-Bok;Park, Joo-Hoon;Kim, Sung-Jo
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.520-525
    • /
    • 2009
  • Early onset of Batten disease (EBD), one of the most lethal neurodegenerative storage disorders of childhood, is caused by inactivating mutations in the Ceroid Lipofuscinosis, Neuronal (CLN1) gene. Neurogranin, a calmodulin-binding protein, is expressed in the brain and participates in the protein kinase C (PKC) signaling pathway. While oxidative stress is the suggested cause of neurodegeneration in EBD, its molecular mechanism(s) remains obscure. In this research, we examined the levels of neurogranin in the brain mRNA of wild-type (WT) mice and EBD knockout (KO) mice, as well as the proteins. We also performed neuronal cultures to measure the expression levels of neurgranin and phosphorylated-neurogranin with or without oxidative stress inducers and anti-oxidants. Results showed that neurogranin in both EBD KO mice brain mRNA and protein extracts decreased in an age dependent manner. However, high amounts of phosphorylated-neurogranin were detected in the 6-month brain. This pattern was also confirmed by cultured neurospheres samples. Moreover, neurospheres treated with $H_2O_2$, an oxidative stress inducer, showed increased phosphorylated-neurogranin patterns. Interestingly, this pattern returned to normal status when treated with N-acetyl-L-cystein, an anti-oxidant, after $H_2O_2$ treatment was performed. Our results suggest that the phosphorylation of neurogranin is affected by oxidative stress status in EBD, and appropriate anti-oxidant treatment will relieve hyper-phosphorylation of neurogranin.